XH :
\(\frac{2-5\sqrt{x}}{\sqrt{x}+3}-\frac{2}{3}=\frac{2-5\sqrt{x}-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}=\frac{-4-7\sqrt{x}}{3\left(\sqrt{x}+3\right)}\)
Vì \(-7\sqrt{x}\le0\Rightarrow-6-7\sqrt{x}
XH :
\(\frac{2-5\sqrt{x}}{\sqrt{x}+3}-\frac{2}{3}=\frac{2-5\sqrt{x}-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}=\frac{-4-7\sqrt{x}}{3\left(\sqrt{x}+3\right)}\)
Vì \(-7\sqrt{x}\le0\Rightarrow-6-7\sqrt{x}
\(e.B=\frac{3+\sqrt{x}}{4+\sqrt{x}}\left(0\le x< 1\right)\)
CMR: B < \(\frac{4}{5}\)
\(c.C=\frac{\sqrt{x}+1}{\sqrt{x}+3};D=\frac{\sqrt{x}+2}{\sqrt{x}+4}\left(x\ge0\right)\)
CMR : C<D
\(d.\frac{\sqrt{x}}{\sqrt{x}+\sqrt{x}+4}\left(x>0\right)\)
CMR : \(D< \frac{1}{4}\)
Bài 1: Cho các số thực dương a, b, c thỏa mãn a+b+c=5, √a+√b+√c=3. Tính giá trị biểu thức
M = $\frac{\sqrt{a}}{a+2} + \frac{\sqrt{b}}{b+2} + \frac{\sqrt{c}}{c+2} - \frac{4}{\sqrt{(a+2)(b+2)(c+2)}}$
Bài 2: Tìm các số thực x$\geq 0$ sao cho E = $\frac{\sqrt{x}}{x\sqrt{x}-2\sqrt{x}+2}$ nhận giá trị nguyên
Bài 3: Tìm các số thực x, y, z thỏa mãn $\left\{\begin{matrix} \sqrt{x}+\sqrt{y-2}=2\\ \sqrt{y+1}+\sqrt{z-3}=3\\ \sqrt{z+5}+\sqrt{x+3}=5 \end{matrix}\right.$
Bài 4: CMR $2 < \sqrt{2\sqrt{3\sqrt{4...\sqrt{2018}}}} <3$
Bài 5: CMR $\sqrt{2\sqrt[3]{3\sqrt[4]{4...\sqrt[2018]{2018}}}} <2$
CMR : biểu thức sau không phụ thuộc vào x :
A = \(\frac{\sqrt{x}+\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{7+4\sqrt{3}}-x}{\sqrt[4]{9-4\sqrt{5}}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)
\(CMR\)
\(\frac{5\sqrt{x}-2}{5\sqrt{x}+3}\le\frac{2}{3}\)
Giải giúp mik vs đap cần gấp . Cảm ơn mn. Giải cho mik bài 1 cx đc
1/ Rút gọn
A=\(\sqrt{7}-4\sqrt{3}+\sqrt{4}-2\sqrt{3}\)
B=\(\left(2+\frac{5-\sqrt{5}}{\sqrt{5}-1}\right)\) \(\left(2-\frac{5+\sqrt{5}}{\sqrt{5}+1}\right)\)
C=\(\left(\sqrt{3}+1\right)\) \(\left(\frac{\sqrt{14}-6\sqrt{3}}{5+\sqrt{3}}\right)\)
2/Cho P=\(\left(\sqrt{x-\frac{1}{\sqrt{x}}}\right)\):\(\left(\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)
a/ cmr: P>0, V x >0, x\(\ne\)1
b/Tính GT P khi x\(\frac{2}{2+\sqrt{3}}\)
Bài 1: Cho các số thực dương a, b, c thỏa mãn a+b+c=5, √a+√b+√c=3. Tính giá trị biểu thức
M = \(\frac{\sqrt{a}}{a+2} + \frac{\sqrt{b}}{b+2} + \frac{\sqrt{c}}{c+2} - \frac{4}{\sqrt{(a+2)(b+2)(c+2)}}\)
Bài 2: Tìm các số thực \(x\geq 0\) sao cho E = \(\frac{\sqrt{x}}{x\sqrt{x}-2\sqrt{x}+2}\) nhận giá trị nguyên
Bài 3: Tìm các số thực x, y, z thỏa mãn \(\sqrt{x}+\sqrt{y-2}=2\) và \(\sqrt{y+1}+\sqrt{z-3}=3\) và \(\sqrt{z+5}+\sqrt{x+3}=5\)
Bài 4: CMR \(2 < \sqrt{2\sqrt{3\sqrt{4...\sqrt{2018}}}} <3\)
Bài 5: CMR \(\sqrt{2\sqrt[3]{3\sqrt[4]{4...\sqrt[2018]{2018}}}} <2 \)
rút gọn
a/ \(\frac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\frac{2b}{b-a}\)
CMR
\(A=\left(\frac{\sqrt{x}}{3+x}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
CMR: Phương trình x5+x+1=0 có nghiệm duy nhất là:
x = \(\frac{1}{3}\)( 1 - \(\sqrt[3]{\frac{25+\sqrt{621}}{2}}\) - \(\sqrt[3]{\frac{25-\sqrt{621}}{2}}\))
\(\sqrt{X}+\sqrt{Y}+\sqrt{Z}=3\) 3 cmr \(X^2\sqrt{X}+y^2+\sqrt{Y}+z^2\sqrt{Z}+\frac{1}{\sqrt{X}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{Z}}\ge\)