Bài 1: Cho a = \(\sqrt{3+\sqrt{5+2\sqrt{3}}}+\sqrt{3-\sqrt{5+2\sqrt{3}}}\)
CMR a2 -2a-2=0
Bài 2 Cho B = \(\frac{1+\sqrt{x+1}}{x+1}+\frac{1+\sqrt{1-x}}{x-1}\)
Tính B sau khi thay x = a = \(\frac{\sqrt{3}}{2}\)
Bài 3: hãy biểu diễn \(\sqrt{\frac{3+\sqrt{5}}{2}}\) thành a+b\(\sqrt{5}\) với a và b thuộc Q
Bài 1
a > 0
\(a^2=3+\sqrt{5+2\sqrt{3}}+3-\sqrt{5+2\sqrt{3}}\) \(+2\sqrt{3^2-\left(5+2\sqrt{3}\right)}\)
= \(6+2\sqrt{4-2\sqrt{3}}=6+2\left(\sqrt{3}-1\right)=4+2\sqrt{3}\) = \(\left(\sqrt{3}+1\right)^2\)
=> a = \(\sqrt{3}+1\)
Thay vào : a2 -2a - 2 = \(4+2\sqrt{3}-2\left(\sqrt{3}+1\right)-2=0\) (đpcm)