b1 cho phân thưc
A=1/x+5 +2/x-5 -2x+10/(x+5)(x-5) (x#5,-5)
a)rút gọn
b)cho =-3 tính giá trị của biểu thức 9x2-42x+49
b2 cho phân thức A=3/x+3 +1/x-3 -18/9-x2 (x#3,-3)
a)rút gọn
b) tìm x để A=4
giải hộ minh chi tiết với ạ . cảm ơn mình đang cần gấp
b1: cho phân thức:
P= (x+1/ x-1 + 2/ x^2-1 - x/ x+1 ) * x-1/ x+2
a, tìm ĐKXĐ
b, rút gọn
c, tính giá trị của P biết x^2 - 3x = 0
d, tìm x nguyên để P nhận giá trị nguyên
b2: cho phân thức:
Q= x^2+2x/2x+10 + x-5/x + 50-5x/2x(x+5)
a, tìm ĐKXĐ
b, tìm x để Q=0; Q=1/4
c,tìm x để Q>0; Q<0
ĐKXĐ: \(x\ne\pm1;-2\)
\(P=\left(\frac{x+1}{x-1}+\frac{2}{x^2-1}-\frac{x}{x+1}\right).\frac{x-1}{x+2}\)
\(=\left(\frac{\left(x+1\right)^2}{\left(x-1\right).\left(x+1\right)}+\frac{2}{\left(x-1\right).\left(x+1\right)}-\frac{x\left(x-1\right)}{\left(x-1\right).\left(x+1\right)}\right).\frac{x-1}{x+2}\)
\(=\left(\frac{x^2+2x+1}{\left(x-1\right).\left(x+1\right)}+\frac{2}{\left(x-1\right).\left(x+1\right)}-\frac{x^2-x}{\left(x-1\right).\left(x+1\right)}\right).\frac{x-1}{x+2}\)
\(=\left(\frac{x^2+2x+1+2-x^2+x}{\left(x-1\right).\left(x+1\right)}\right).\frac{x-1}{x+2}\)
\(=\frac{3x+3}{\left(x-1\right).\left(x+1\right)}.\frac{x-1}{x+2}=\frac{3.\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}.\frac{x-1}{x+2}=\frac{3}{x+2}\)
c. \(x^2-3x=0\Leftrightarrow x.\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Nếu x=0 thì: \(P=\frac{3}{x+2}=\frac{3}{0+2}=\frac{3}{2}\)
Nếu x=3 thì: \(P=\frac{3}{x+2}=\frac{3}{3+2}=\frac{3}{5}\)
d. Ta có: \(P=\frac{3}{x+2}\inℤ\)
Vì \(x\inℤ\Rightarrow x+2\inℤ\Rightarrow x+2\inƯ\left\{3\right\}\Rightarrow x+2\in\left\{\pm1;\pm3\right\}\Leftrightarrow x\in\left\{-3;-1;1;-5\right\}\)
Kết hợp ĐKXĐ \(\Rightarrow x\in\left\{-3;-5\right\}\)
b1:
[4+2x]=-3x [3x-1]+2=x
[x+15]+1=3x [2x-5]+x=2
b2:
[2x-5]=x+1 [3x-2]-1=x
[3x-7]=2x+1 [2x-1]+1=x
B1 :
cho pt : ( (5x-a)/6 ) - 1 = (2x+a)/5 - a/10 - 7(5-x)/ 28
1. giải pt với ẩn là x
2. Tìm a để x= -1
3. Tìm giá trị nguyên của a để 0<x<10
B2:
1. cho a+b+c+d = 0, cmr : a^3 + b^3 + c^3 + d^3 = 3(ab-cd)(c+d)
2. phân tích đa thức thành nhân tử : Q= ( x^2 + 4x + 8)^2 + 3x(x^2 + 4x + 8) + 2x^2
b1
a)-(x+2)+2x=3
b) (2x-10)-(x-5)=5
B1: Tìm x:
1/ \(\dfrac{x+3}{15}\) = \(\dfrac{1}{3}\) - \(\dfrac{1}{15}\)
2/ (2x - 5) = (x - 3) = 0
3/ (3x - 4) - (2x - 5) = 3
4/ (2x + 1) x (\(\dfrac{1}{2}\)x - 1) = 0
1) PT \(\Leftrightarrow\dfrac{x+3}{15}=\dfrac{4}{15}\) \(\Rightarrow x+3=4\) \(\Rightarrow x=1\)
Vậy ...
2) Mạnh dạn đoán đề là \(\left(2x-5\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-5=0\\x-3=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=3\end{matrix}\right.\)
Vậy ...
3) PT \(\Rightarrow3x-4-2x+5=3\)
\(\Rightarrow x=2\)
Vậy ...
4) PT \(\Rightarrow\left[{}\begin{matrix}2x+1=0\\\dfrac{1}{2}x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=2\end{matrix}\right.\)
Vậy ...
3) Ta có: \(\left(3x-4\right)-\left(2x-5\right)=3\)
\(\Leftrightarrow3x-4-2x+5=3\)
\(\Leftrightarrow x+1=3\)
hay x=2
B1: Làm phép chia:
a) (x^4+x^3+6x^2+5x+5):(x^2+x+1)
b) (x^4+x^3+2x^2+x+1):(x^2+x+1)
c) (3x^3+8x^2-x-10):(3x+5)
B2: Xác định hệ số a, sao cho:
a) (a^3x^3+3ax^2-6x-2a) chia het (x+1)
b) (2x^2-x+2-a) chia het (2x-1)
\(\frac{x^4+x^3+6x^2+5x+5}{x^2+x+1}=\frac{x^4+x^3+x^2+5x^2+5x+5}{x^2+x+1}=\frac{x^2\left(x^2+x+1\right)+5\left(x^2+x+1\right)}{\left(x^2+x+1\right)}=\frac{\left(x^2+x+1\right)\left(x^2+5\right)}{x^2+x+1}=x^2+5\)
\(\frac{x^4+x^3+2x^2+x+1}{x^2+x+1}=\frac{x^4+x^3+x^2+x^2+x+1}{x^2+x+1}=\frac{x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)}{x^2+x+1}=\frac{\left(x^2+x+1\right)\left(x^2+1\right)}{x^2+x+1}=x^2+1\)
B1. Rút gọn
P=( 2/ √x -2 +2/ 2√x +1 - 5√x -7/ 2x- 3√x -2): 2√x +3/ 5x-10√x
ghi đề bằng công thức toán đi bạn
B1:tìm x biết a, (-2+x^2)(x^2-2)(x^2-2)(x^2-2)(x^2-2)=1 b, (2x+3)(x-4)+(x-5)(x-2)=(3x-5)(x-4) c,(8x-3)(3x+2)-(4x+7)(x+4)=(4x+1)(5x-1) d, 2x^2+3(x-1)(x+1)=5x(x+1) e, (8-5x)(x+2)+4(x-2)(x+1)=(2+x)(2-x) f, 4(x-1)(x+5)-(x+2)(x+5)=3(x-1)(x+2)
Bạn nên viết lại đề bài cho sáng sủa, rõ ràng để người đọc dễ hiểu hơn.
f: =>4(x^2+4x-5)-x^2-7x-10=3(x^2+x-2)
=>4x^2+16x-20-x^2-7x-10-3x^2-3x+6=0
=>6x-24=0
=>x=4
e: =>8x+16-5x^2-10x+4(x^2-x-2)=4-x^2
=>-5x^2-2x+16+4x^2-4x-8=4-x^2
=>-6x+8=4
=>-6x=-4
=>x=2/3
d: =>2x^2+3x^2-3=5x^2+5x
=>5x=-3
=>x=-3/5
b: =>2x^2-8x+3x-12+x^2-7x+10=3x^2-12x-5x+20
=>-12x-2=-17x+20
=>5x=22
=>x=22/5
Chúng ta sẽ giải từng phương trình một:
a. Đặt , ta có:
B1)
A = \(\dfrac{1}{x+2}+\dfrac{x^2-x-2}{x^2-7x+10}-\dfrac{2x-4}{x-5}\)
a) Rút gọn
b) tính A khi x=3
c) tìm x để A = 1
d) tìm giá trị của x đẻ A nguyên
B2)
\(M=\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
a) Rút gọn
b) Tính M khi x = 3 , x = 5
GIÚP MK VS
B1:
a) A = \(\dfrac{1}{x+2}+\dfrac{x^2-x-2}{x^2-7x+10}-\dfrac{2x-4}{x-5}\)
= \(\dfrac{1}{x+2}+\dfrac{\left(x^2-2x\right)+\left(x-2\right)}{\left(x^2-2x\right)-\left(5x-10\right)}-\dfrac{2\left(x-2\right)}{x-5}\)
= \(\dfrac{1}{x+2}+\dfrac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x-5\right)}-\dfrac{2\left(x-2\right)}{x-5}\) [ĐKXĐ: x ≠ -2; x ≠ 5]
= \(\dfrac{x-5}{\left(x+2\right)\left(x-5\right)}+\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-5\right)\left(x+2\right)}-\dfrac{2\left(x-2\right)\left(x+2\right)}{\left(x-5\right)\left(x+2\right)}\)
= \(\dfrac{-x^2+4x+5}{\left(x+2\right)\left(x-5\right)}\)
= \(\dfrac{-x\left(x-5\right)-\left(x-5\right)}{\left(x+2\right)\left(x-5\right)}\)
= \(\dfrac{\left(x-5\right)\left(-x-1\right)}{\left(x-5\right)\left(x+2\right)}\)
= \(-\dfrac{x+1}{x+2}\)
b) Thay x = 3 vào A, ta có:
A = \(-\dfrac{3+1}{3+2}=-\dfrac{4}{5}\)
c) A = 1
<=> \(-\dfrac{x+1}{x+2}\)= 1 <=> -(x + 1) = x + 2 <=> -x - 1 = x + 2
<=> -2x = 3 <=> x = \(\dfrac{-3}{2}\)
d) A = \(\dfrac{-\left(x+1\right)}{x+2}\)= \(\dfrac{-\left(x+2\right)+1}{x+2}\)= -1 + \(\dfrac{1}{x+2}\)
A đạt giá trị nguyên khi 1 chia hết cho x + 2 hay x + 2 ∈ Ư(1) = {1;-1}
* x + 2 = 1 <=> x = -1
* x + 2 = -1 <=> x = -3
B2: M = \(\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
= \(\dfrac{x\left(x+2\right)}{2\left(x+5\right)}+\dfrac{x-5}{x}+\dfrac{5\left(10-x\right)}{2x\left(x+5\right)}\)[ĐKXĐ: x ≠ 0; x ≠ -5
= \(\dfrac{x^2\left(x+2\right)+2\left(x+5\right)\left(x-5\right)+5\left(10-x\right)}{2x\left(x+5\right)}\)
= \(\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
= \(\dfrac{x^2+4x-5}{2\left(x+5\right)}\)
= \(\dfrac{\left(x^2+5x\right)-\left(x+5\right)}{2\left(x+5\right)}\)
\(\dfrac{\left(x+5\right)\left(x-1\right)}{2\left(x+5\right)}=\dfrac{x-1}{2}\)
b) Thay x = 3 vào M, ta có:
M = \(\dfrac{3-1}{2}=1\)
Thay x = 5 vào M, ta có:
M = \(\dfrac{5-1}{2}=2\)