Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Meow Meow
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 14:51

Đây không phải là mệnh đề

THÀ NH ╰︵╯
10 tháng 1 2023 lúc 18:31

"n chia hết cho 3", với n là số tự nhiên.  Đây là không phải là 1 mệnh đề vì không xác định được tính đúng sai của mệnh đề này (phụ thuộc vào biến n) 

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 10:47

a) Với n = 32, ta có các mệnh đề P, Q khi đó là:

P: “Số tự nhiên 32 chia hết cho 16”;

Q: “Số tự nhiên 32 chia hết cho 8”;

Mệnh đề P ⇒ Q: “Nếu số tự nhiên 32 chia hết cho 16 thì số tự nhiên 32 chia hết cho 8”.

Đây là mệnh đề đúng vì 32 chia hết cho 16 và 8.

b) Với n = 40, ta có các mệnh đề P, Q khi đó là:

P: “Số tự nhiên 40 chia hết cho 16”;

Q: “Số tự nhiên 40 chia hết cho 8”;

Mệnh đề đảo của mệnh đề P ⇒ Q là mệnh đề Q ⇒ P: “Nếu số tự nhiên 40 chia hết cho 8 thì số tự nhiên 40 chia hết cho 16”.

Mệnh đề đảo này là mệnh đề sai. Vì 40 chia hết cho 8 nhưng 40 không chia hết cho 16.

Tai Lam
Xem chi tiết
Akai Haruma
20 tháng 9 2023 lúc 20:56

Lời giải:
$n^3-n=n(n^2-1)=n(n-1)(n+1)$ là tích của 3 số nguyên liên tiếp nên luôn chia hết cho $3$

Do đó mệnh đề $P$ đúng.

Anh Mai
Xem chi tiết
Đinh Tuấn Việt
24 tháng 9 2015 lúc 10:46

Ta có :

\(n^2\) chia hết cho p nghĩa là \(n.n\) chia hết cho p do đó n chia hết cho p

Vậy mệnh đề đẻo lại là n chia hết cho p thì n2 chia hết cho p là đúng       

Trung
24 tháng 9 2015 lúc 10:56

Đinh Đức Tài ns đúng

Tạ Duy Phương
24 tháng 9 2015 lúc 13:14

 

\(tan\alpha=2\sqrt{2}\Rightarrow cot\alpha=\frac{1}{2\sqrt{2}}\Rightarrow cot^2\alpha=\frac{1}{8}\Rightarrow1+cot^2\alpha=1+\frac{1}{8}=\frac{9}{8}\). Áp dụng công thức 

\(1+cot^2\alpha=\frac{1}{sin^2\alpha}\)(bạn tự chứng minh bằng cách vận dụng định nghĩa các tỉ số lượng giác trong tam giác vuông).

\(\Rightarrow sin^2\alpha=\frac{1}{1+cot^2\alpha}=\frac{1}{\frac{9}{8}}=\frac{8}{9}\Rightarrow sin\alpha=\frac{2\sqrt{2}}{3}\)

 

 

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 10:43

a) Ta chưa thể khẳng định được tính đúng sai của câu “n chia hết cho 3” do chưa có giá trị cụ thể của n.

b) Với n = 21 thì câu ”21 chia hết cho 3” là mệnh đề toán học. Mệnh đề này đúng.

c) Với n = 10 thì câu ”10 chia hết cho 3” là mệnh đề toán học. Mệnh đề này sai.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 21:13

(1) “Với mọi số tự nhiên \(x,\,\,\sqrt x \) là số vô tỉ” sai, chẳng hạn \(x = 1:\;\sqrt x  = 1\) không là số vô tỉ.

(2) “Bình phương của mọi số thực đều không âm” đúng;

(3) “Có số nguyên cộng với chính nó bằng 0” đúng, số nguyên đó chính là số 0;

(4) “Có số tự nhiên n sao cho 2n – 1 = 0” sai, vì chỉ khi \(n = \frac{1}{2}\) thì 2n – 1 = 0 nhưng \(\frac{1}{2}\) không phải là số tự nhiên.

duc phuc
Xem chi tiết
Akai Haruma
17 tháng 8 2021 lúc 0:56

a. Đúng, vì $9\vdots 3$ nên $n\vdots 9\Rightarrow n\vdots 3$

b. Sai. Vì cho $n=2\vdots 2$ nhưng $2\not\vdots 4$

c. Đúng, theo định nghĩa tam giác cân

d. Sai. Hình thang cân là 1 phản ví dụ.

Akai Haruma
17 tháng 8 2021 lúc 0:58

e.

Sai. Cho $m=-1; n=-2$ thì $m^2< n^2$

f.

Đúng, vì $a\vdots c, b\vdots c$ nên trong $ab$ có chứa nhân tử $c$

g.

Sai. Hình bình hành là hình thang có 2 cạnh bên bằng nhau nhưng không phải hình thang cân.

 

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 10:46

a) Phát biểu “Mọi số tự nhiên n đều chia hết cho 3” là một phát biểu sai (vì 2 là số tự nhiên nhưng 2 không chia hết cho 3). Đây là một mệnh đề.

b) Phát biểu “Tồn tại số tự nhiên n đều chia hết cho 3” là một phát biểu đúng (chẳng số 3 là số tự nhiên và 3 chia hết cho 3). Đây là một mệnh đề.

KHANH QUYNH MAI PHAM
Xem chi tiết
Khanh Nguyễn Ngọc
8 tháng 9 2020 lúc 21:54

Mệnh đề đúng.

Vì \(\left(2n-1\right)^2-1=4n^2-4n+1-1=4\left(n^2-n\right)⋮4,\forall n\inℕ\)

Phủ định: \(\exists n\inℕ,\left(2n-1\right)^2-1⋮̸4\)

Khách vãng lai đã xóa
Capheny Bản Quyền
8 tháng 9 2020 lúc 21:58

\(\left(2n-1\right)^2-1\) 

\(=4n^2-4n+1-1\) 

\(=4n^2-4n\) 

\(=4n\left(n-1\right)⋮4\forall n\) 

Vậy mệnh đề trên đúng 

Mệnh đề phủ định của mệnh đề trên 

\(\exists x\in R:\left(2n-1\right)^2-1\) không chia hết cho 4 

Khách vãng lai đã xóa