Giúp mik bài này với:
Tìm các cặp x;y thỏa mãn: 2x2 - 2xy + x + y = 14
mình cần gấp !!
Giúp mình giải bài này với:
Tìm GTLN của biểu thức sau :A=x/(x+2022)^2 với x>0
\(A=\dfrac{x}{\left(x+2022\right)^2}=\dfrac{x}{x^2+4044x+2022^2}=\dfrac{1}{x+4044+\dfrac{2022^2}{x}}=\dfrac{1}{\left(x+\dfrac{2022^2}{x}\right)+4044}\le\dfrac{1}{2.\sqrt{x}.\sqrt{\dfrac{2022^2}{x}}+4044}=\dfrac{1}{2..\sqrt{\dfrac{x.2022^2}{x}}+4044}=\dfrac{1}{4044+4044}=\dfrac{1}{8088}\)-\(A_{max}=\dfrac{1}{8088}\Leftrightarrow x=2022\)
bạn ơi giúp mình bài toán này với:tìm x,y biết:x+3/y+5=3/5 va x+y=16
Ta có :
\(\frac{x+3}{y+5}=\frac{3}{5}\)\(\Leftrightarrow\)\(\frac{x+3}{3}=\frac{y+5}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+3+y+5}{3+5}=\frac{\left(x+y\right)+\left(3+5\right)}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)
Do đó :
\(\frac{x+3}{3}=3\)\(\Rightarrow\)\(x=3.3-3=9-3=6\)
\(\frac{y+5}{5}=3\)\(\Rightarrow\)\(y=3.5-5=10\)
Vậy \(x=6\) và \(y=10\)
Chúc bạn học tốt ~
lp 6 thì dãy tỉ số = nhau cái gì :))
\(\frac{x+3}{y+5}=\frac{3}{5}\)
\(\Rightarrow\left(x+3\right)\cdot5=\left(y+5\right)\cdot3\)
\(\Rightarrow5x+15=3y+15\)
\(\Rightarrow5x=3y\)
\(\Rightarrow\frac{x}{y}=\frac{3}{5}\) ; mà x+y = 16
\(\Rightarrow\hept{\begin{cases}x=16:\left(3+5\right)\cdot3=6\\y=16:\left(3+5\right)\cdot5=10\end{cases}}\)
Giúp mình bài này với:Tìm x
34+4x(52-3x)=86
[(4x+28)x3=55] :5=35
giúp mik với:
tìm y và x là số nguyên tố : x mũ2- 6y mũ 2 =1
có ai là được bài này không giúp mik với:
Tìm các cặp số nguyên x,y thỏa mãn x2 - xy + x = 4y - 5
hướng dẫn giải cụ thể hộ mik
giúp mình câu này với:
tìm các số tự nhiên n thỏa mãn:
a> n^2 + 6n + 3 là SCP
giả sử \(n^2+6n+3\) là SCP
Đặt \(n^2+6n+3=k^2\)
\(\Rightarrow\left(n^2+6n+9\right)-k^2-6=0\\ \Rightarrow\left(n+3\right)^2-k^2=6\\ \Rightarrow\left(n-k+3\right)\left(n+k+3\right)=6\)
Vì \(n\in N\Rightarrow\left\{{}\begin{matrix}n-k+3\in Z,n+k+3\in Z\\n-k+3< n+k+3\\n-k+3,n+k+3\inƯ\left(6\right)\end{matrix}\right.\)
rồi bạn lập bảng ra, tự lm tiếp nhé
Giải giúp mik với:Tìm x:
a) x+ (x+1) + (x+2) +....+ (x+2010)=2029099
b) 2+4+6+8+....+2x=210
ai đó làm ơn giúp bai này với:tìm gt lớn nhất của đơn thức xy voi x+y=2
Có bạn nào bik làm bài này ko? Giúp mik với!
Tìm các cặp số nguyên (x, y) thỏa mãn:
a) |x -3y|5 +|y +4| = 0
b) |x -y -5| +(y -3)4 = 0
c) |x +3y -1| +3|y +2| = 0
Mik đang cần gấp!
a) Có \(\left|x-3y\right|^5\ge0\);\(\left|y+4\right|\ge0\)
\(\rightarrow\left|x-3y\right|^5+\left|y+4\right|\ge0\)
mà \(\left|x-3y\right|^5+\left|y+4\right|=0\)
\(\rightarrow\left\{{}\begin{matrix}\left|x-3y\right|^5=0\\\left|y+4\right|=0\end{matrix}\right.\)
\(\rightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\)
\(\rightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
b) Tương tự câu a, ta có:
\(\left\{{}\begin{matrix}\left|x-y-5\right|=0\\\left(y-3\right)^4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\)
c. Tương tự, ta có:
\(\left\{{}\begin{matrix}\left|x+3y-1\right|=0\\\left|y+2\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1-3y\\y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=-2\end{matrix}\right.\)
a. \(\left|x-3y\right|^5\ge0,\left|y+4\right|\ge0\Rightarrow\left|x-3y\right|^5+\left|y+4\right|\ge0\) \(\Rightarrow VT\ge VP\)
Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-3y\right|^5=0\\\left|y+4\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\) Vậy...
b. \(\left|x-y-5\right|\ge0,\left(y-3\right)^4\ge0\Rightarrow\left|x-y-5\right|+\left(y-3\right)^4\ge0\) \(\Rightarrow VT\ge VP\)
Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-y-5\right|=0\\\left(y-3\right)^4=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\) Vậy ...
c. \(\left|x+3y-1\right|\ge0,3\cdot\left|y+2\right|\ge0\Rightarrow\left|x+3y-1\right|+3\left|y+2\right|\ge0\) \(\Rightarrow VT\ge VP\) Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x+3y-1\right|=0\\3\left|y+2\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1-3y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-\left(-2\right)\cdot3=7\\y=-2\end{matrix}\right.\) Vậy...