Tìm x, biết:
4 x 3x-1 + 2 x 3x+2 = 4 x 36 +2 x 39
Tìm x biết
A/3x^2-3x(x-2)=36
B/(3x^2-x+1)(x-1)+x^2(4-3x)=5/2
Giải giúp với
Bài 7. Tìm x,biết:
a) x-3x2=0 e) 5x(3x-1)+x(3x-1)-2(3x-1)=0
b) (x+3)2-x(x-2)=13 c) (x-4)2-36=0
d) x2-7x+12=0 g) x2-2018x-2019=0
Bài 8. Tìm x, biết
a) (2x-1)2=(x+5)2 b) x2-x+1/4
c) 4x4-101x2+25=0 d) x3-3x2+9x-91=0
Tìm x biết:
1. (x-2)^2-(x-3)(x+3)=6
2. 4(x-3)^2-(2x-1)(2x+1)=10
3. (x-4)^2-(x-2)(x+2)=6
4.9(x+1)^2-(3x-2)(3x+2)=10
5. 3x +2(5-x)=0
6.x(2x-1)(x+5)-(2x^2+1)(x+4,5)=3,5
7, 3x^2-3x(x-2)=36
8. (3x^2-x+1)(x-1) +x^2(4-3x)=5/2
Tìm x biết:
d) (x-2)3-(x-3).(x2+3x+9)+6.(x+1)2=15
e) (x-1)3+(2-x).(4+2x+x2)+3x.(x+2)=17
f) (3x+3)2-18x=36+(x-3).(x2+3x+9)
Giải chi tiết giúp mình nha.Cảm ơn.
\(d,\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=15\\ \Leftrightarrow24x=-10\Leftrightarrow x=-\dfrac{5}{12}\\ e,\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=17\\ \Leftrightarrow9x=10\Leftrightarrow x=\dfrac{10}{9}\\ f,\Leftrightarrow9x^2+18x+9-18x=36+x^3-27\\ \Leftrightarrow x^3-9x^2=0\Leftrightarrow x^2\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)
Tìm x, biết:
a) 5x(x+4)- x(5x+1)=0
b) 3x( 5-x) + 4(x-5)=0
c) x(x-3)+ 4x-12=0
d) x2-36=0
e) x2+3x+1=2
a) \(5x\left(x+4\right)-x\left(5x+1\right)=0\)
\(\Leftrightarrow x\left[5\left(x+4\right)-5x-1\right]=0\)
\(\Leftrightarrow x\left(5x+20-5x-1\right)=0\Leftrightarrow x=0\)
b) \(3x\left(5-x\right)+4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(4-3x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=\frac{4}{3}\end{cases}}\)
c) \(x\left(x-3\right)+4x-12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-4\end{cases}}\)
d) \(x^2-36=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
e) \(x^2+3x+1=2\)
\(\Leftrightarrow x^2+3x+1-2=0\)
\(\Leftrightarrow x^2+3x-1=0\)
\(\Leftrightarrow x^2+3x+\frac{3}{2}-\frac{5}{2}=0\)
\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2-\frac{5}{2}=0\)
\(\Leftrightarrow\left(x+\frac{3}{2}+\frac{\sqrt{5}}{\sqrt{2}}\right)\left(x+\frac{3}{2}-\frac{\sqrt{5}}{\sqrt{2}}\right)=0\)
Còn lại ........... Tự lm nất nha
Tìm x biết:
1,
a,3x(x+1) - 2x(x+2) = -x-1
b,2x(x-2020) - x+2020 = 0
c,(x-4)2 - 36 = 0
d,x2 + 8x - 16 = 0
e,x(x+6) - 7x - 42 = 0
f,25x2 - 16 = 0
2,
a,3x3 - 12x = 0
b,x2 + 3x - 10 = 0
Bài 1:
a) \(\Rightarrow3x^2+3x-2x^2-4x+x+1=0\)
\(\Rightarrow x^2=-1\left(VLý\right)\Rightarrow S=\varnothing\)
b) \(\Rightarrow\left(x-2020\right)\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2}\end{matrix}\right.\)
c) \(\Rightarrow\left(x-10\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
d) \(\Rightarrow\left(x+4\right)^2=0\Rightarrow x=-4\)
e) \(\Rightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
f) \(\Rightarrow\left(5x-4\right)\left(5x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)
Bài 2:
a) \(\Rightarrow3x\left(x^2-4\right)=0\Rightarrow3x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow x\left(x-2\right)+5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Tìm x:
a) x(2x - 1)(x + 5) - (2x^2 + 1)(x + 4,5) = 3,5
b) 3x^2 - 3x(x - 2) = 36
c) (3x^2 - x + 1)(x - 1) + x^2(4 - 3x) = 5/2
b)3x2 - 3x(x - 2)=36 c) (3x2 - x + 1)(x - 1)+ x2(4 - 3x) = 5/2
3x2 - 3x2 + 6x= 36 3x3 - 3x2 - x2 + x + x - 1 + 4x2 - 3x3= 5/2
6x=36 =>x=36 : 6= 6 (3x3 - 3x3) + (-3x2 - x2 + 4x2) + (x + x) - 1= 5/2
2x - 1= 5/2 =>2x= 5/2 + 1= 7/2
x= 7/2 : 2 =7/4
Bài 3: phân tích thành nhân tử:
1/ 9x^3-xy^2
2/x^2-3xy-6x+18y
3/x^2-3xy-6x+18y 3/6x(x-y)-9y^2+9xy
4/ 6xy-x^2+36-9y^2
5/ x^4-6x^2+5
6/ 9x62-6x-y^2+2y
Bài 4:Tìm x, biết:
1/ (x-1)(x^2+x+1)-x^3-6x=11
2/ 16x^2-(3x-4)^2=0
3/ x^3-x^2+3-3x=0
4/ x-1/x+2=x+2/x+1
5/1/x+2/x+1=0
6/ 9-x^2/x : (x-3)=1
Bài5: 1/ 12x^3y^2/18xy^5
2/10xy-5x^2/2x^2-8y^2
3/ x^2-xy-x+y/x^2+xy-x-y
4/ (x+1)(x^2-2x+1)/(6x^2-6)(x^3-1)
5/ 2x^2-7x+3/1-4x^2
bài 5:
1: \(\dfrac{12x^3y^2}{18xy^5}=\dfrac{12x^3y^2:6xy^2}{18xy^5:6xy^2}=\dfrac{2x^2}{3y^3}\)
2: \(\dfrac{10xy-5x^2}{2x^2-8y^2}=\dfrac{5x\cdot2y-5x\cdot x}{2\left(x^2-4y^2\right)}\)
\(=\dfrac{5x\left(2y-x\right)}{-2\left(x+2y\right)\left(2y-x\right)}=\dfrac{-5x}{2\left(x+2y\right)}\)
3: \(\dfrac{x^2-xy-x+y}{x^2+xy-x-y}\)
\(=\dfrac{\left(x^2-xy\right)-\left(x-y\right)}{\left(x^2+xy\right)-\left(x+y\right)}\)
\(=\dfrac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}=\dfrac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}=\dfrac{x-y}{x+y}\)
4: \(\dfrac{\left(x+1\right)\left(x^2-2x+1\right)}{\left(6x^2-6\right)\left(x^3-1\right)}\)
\(=\dfrac{\left(x+1\right)\left(x-1\right)^2}{6\left(x^2-1\right)\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{\left(x+1\right)\left(x-1\right)}{6\left(x-1\right)\left(x+1\right)\cdot\left(x^2+x+1\right)}\)
\(=\dfrac{1}{6\left(x^2+x+1\right)}\)
5: \(\dfrac{2x^2-7x+3}{1-4x^2}\)
\(=-\dfrac{2x^2-7x+3}{4x^2-1}\)
\(=-\dfrac{2x^2-6x-x+3}{\left(2x-1\right)\left(2x+1\right)}\)
\(=-\dfrac{2x\left(x-3\right)-\left(x-3\right)}{\left(2x-1\right)\left(2x+1\right)}\)
\(=-\dfrac{\left(x-3\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{-x+3}{2x+1}\)
Bài 3:
1: \(9x^3-xy^2\)
\(=x\cdot9x^2-x\cdot y^2\)
\(=x\left(9x^2-y^2\right)\)
\(=x\left(3x-y\right)\left(3x+y\right)\)
2: \(x^2-3xy-6x+18y\)
\(=\left(x^2-3xy\right)-\left(6x-18y\right)\)
\(=x\left(x-3y\right)-6\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-6\right)\)
3: \(x^2-3xy-6x+18y\)
\(=\left(x^2-3xy\right)-\left(6x-18y\right)\)
\(=x\left(x-3y\right)-6\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-6\right)\)
4: \(6xy-x^2+36-9y^2\)
\(=36-\left(x^2-6xy+9y^2\right)\)
\(=36-\left(x-3y\right)^2\)
\(=\left(6-x+3y\right)\left(6+x-3y\right)\)
5: \(x^4-6x^2+5\)
\(=x^4-x^2-5x^2+5\)
\(=x^2\left(x^2-1\right)-5\left(x^2-1\right)\)
\(=\left(x^2-5\right)\left(x^2-1\right)\)
\(=\left(x^2-5\right)\left(x-1\right)\left(x+1\right)\)
6: \(9x^2-6x-y^2+2y\)
\(=\left(9x^2-y^2\right)-\left(6x-2y\right)\)
\(=\left(3x-y\right)\left(3x+y\right)-2\left(3x-y\right)\)
\(=\left(3x-y\right)\left(3x+y-2\right)\)
Rút gọn :
1. (2x-5)(3x+1)-(x-3)^2+(2x+5)^2-(3x+1)^3
2. (2x-1)(2x+1)-3x-2)(2x+3)-(x-1)^3+(2x+3)^3
3. (x-2)(x^2+2x+4)-(3x-2)^3+(3x-4)^2
4. (7x-1)(8x+2)-(2x-7)^2-(x-4)^3-(3x+1)^3
5. (5x-1)(5x+1)-(x+3)(x^2-3x+9)-(2x+4)^2-(3x-4)^2+(2x-5)^3
6. (4x-1)(x+2)-(2x+5)^2-(3x-7)^2+(2x+3)^3=(3x-1)^3
1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)
=-27x^3-18x^2+4x+10
2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27
=7x^3+37x^2+46x+33
5:
\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)
\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)
=7x^3-48x^2+8x-35
Tìm x biết
a) 3x + 2( 5 - x ) = 0 b) x ( 2x - 1 ) ( x + 5 ) -( 2x2 + 1 ) ( x + 4,5 )= 3,5
c) 3x2 - 3x ( x - 2 ) = 36 d) ( 3x2- x + 1) (x-1) = x2(4-3x) = 5 trên 2
\(a,3x+2\left(5-x\right)=0\)
\(\Rightarrow3x+10-2x=0\)
\(\Rightarrow x+10=0\)
\(\Rightarrow x=-10\)
\(b,x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=3,5\)
\(\Rightarrow\left(2x^2-x\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=3,5\)
\(\Rightarrow2x^3+9x^2-5x-2x^3-9x^2-4,5=3,5\)
\(\Rightarrow-5x-4,5=3,5\)
\(\Rightarrow-5x=8\)
\(\Rightarrow x=-\dfrac{8}{5}\)
\(c,3x^2-3x\left(x-2\right)=36\)
\(\Rightarrow3x^2-3x^2+6x=36\)
\(\Rightarrow6x=36\)
\(\Rightarrow x=6\)
\(d,\left(3x^2-x+1\right)\left(x-1\right)=x^2\left(4-3x\right)=\dfrac{5}{2}\)
\(\Rightarrow3x^3-3x^2-x^2+x+x-1+4x^2-3x^3=\dfrac{5}{2}\)
\(\Rightarrow2x-1=\dfrac{5}{2}\)
\(\Rightarrow2x=\dfrac{7}{2}\)
\(\Rightarrow x=\dfrac{7}{4}\)
a,\(3x+2\left(5-x\right)=0\)
\(3x+10-2x=0\)
\(x+10=0\)
\(x=-10\)
c,\(3x^2-3x\left(x-2\right)=36\)
\(3x^2-3x^2+6x=36\)
\(6x=36\)
\(x=6\)