Tìm giá trị nhỏ nhất của đa thức sau :
A= 3x2-x+2
a. Tìm a để đa thức A(x) = 3x3 - 5x2 + x + 2a chia hết cho đa thức B(x) = x + 2
b.tìm giá trị nhỏ nhất của đa thức sau A = 3x2 + 14y2 - 12xy + 6x - 8y + 10
Bài 1: Tìm giá trị nhỏ nhất của biểu thức [(x+1/2)2 + 5/4]
Bài 2: Cho đa thức M= x3+x2y-3x2-xy-y2+4y+x+2019
Tính giá trị của đa thức M biết x+y-3=0
Bài 1:
Ta thấy: $(x+\frac{1}{2})^2\geq 0$ với mọi $x\in\mathbb{R}$
$\Rightarrow (x+\frac{1}{2})^2+\frac{5}{4}\geq \frac{5}{4}$
Vậy gtnn của biểu thức là $\frac{5}{4}$
Giá trị này đạt tại $x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}$
Bài 2:
$x+y-3=0\Rightarrow x+y=3$
\(M=x^2(x+y)-(x+y)x^2-y(x+y)+4y+x+2019\)
\(=-3y+4y+x+2019=x+y+2019=3+2019=2022\)
a,tìm giá trị của a để đa thức 3x2 + 7x + a +4 chia hết cho đa thức x - 5
b,tìm giá trị của b để đa thức 2x3 - 3x2 + x +b chia hết cho đa thức x + 2
Cho đa thức A=x3 + 3x2 + 3x -2 và đa thức B= x+1
a) Thực hiện phép chia đa thức A cho đa thức B.
b) Tìm các giá trị nguyên của x để giá trị của đa thức A chia hết cho giá trị của đa thức B.
a: \(\dfrac{A}{B}=\dfrac{x^3+x^2+2x^2+2x+x+1-3}{x+1}=x^2+2x+1-\dfrac{3}{x+1}\)
b: Để A chia hết cho B thì \(x+1\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{0;-2;2;-4\right\}\)
Với giá trị nào của biến, các đa thức sau có giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
a) x2 + x + 1
b) (x - 1)(x + 2)(x + 3)(x + 6)
a. x2 + x + 1
= x2 + 2.x.1/2 + 1/4 + 3/4
= (x + 1/2)2 + 3/4
Mà (x + 1.2)2 \(\ge\)0
=> (x + 1/2)2 + 3/4 \(\ge\)3/4
Vậy GTNN của đa thức là 3/4 <=> x + 1/2 = 0 <=> x = -1/2
b. (x - 1)(x + 2)(x + 3)(x + 6)
= (x - 1)(x + 6)(x + 2)(x + 3)
= (x2 + 6x - x - 6)(x2 + 3x + 2x + 6)
= (x2 + 5x - 6)(x2 + 5x + 6)
= (x2 + 5x)2 - 62
= (x2 + 5x)2 - 36
Mà (x2 + 5x)2 \(\ge\)0
=> (x2 + 5x)2 - 36 \(\ge\)-36
Vậy đa thức có GTNN là -36 <=> x2 + 5x = 0 <=> x.(x + 5) = 0 <=> x = 0 hoặc x + 5 = 0 <=> x = 0 hoặc x = -5.
Với giá trị nào của biến, các đa thức sau có giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
a) x2 + x + 1
b) (x - 1)(x + 2)(x + 3)(x + 6)
a. x2 + x + 1
= x2 + 2.x.1/2 + 1/4 + 3/4
= (x + 1/2)2 + 3/4
Mà (x + 1.2)2 ≥0
=> (x + 1/2)2 + 3/4 ≥3/4
Vậy GTNN của đa thức là 3/4 <=> x + 1/2 = 0 <=> x = -1/2
b. (x - 1)(x + 2)(x + 3)(x + 6)
= (x - 1)(x + 6)(x + 2)(x + 3)
= (x2 + 6x - x - 6)(x2 + 3x + 2x + 6)
= (x2 + 5x - 6)(x2 + 5x + 6)
= (x2 + 5x)2 - 62
= (x2 + 5x)2 - 36
Mà (x2 + 5x)2 ≥0
=> (x2 + 5x)2 - 36 ≥-36
Vậy đa thức có GTNN là -36 <=> x2 + 5x = 0 <=> x.(x + 5) = 0 <=> x = 0 hoặc x + 5 = 0 <=> x = 0 hoặc x = -5.
a/Tìm x để biểu thức sau có giá trị nhỏ nhất: (x^2)+x+1.
b/Tìm giá trị nhỏ nhất của biểu thức: A=y*(y+1)*(y+2)*(y+3).
c/Phân tích đa thức thành nhân tử: (x^3)+(y^3)+(z^3)-(3*x*y*z)
.
BÀI 2 a, x2+x+1=(x2+1/2*2*x+1/4)-1/4+1=(x+1/2)2 +3/4
MÀ (x+1/2)2>=0 với mọi giá trị của x .Dấu"=" xảy ra khi x+1/2=0 =>x=-1/2
=>(x+1/2)2+3/4>=3/4 với mọi giá trị của x .Dấu "=" xảy ra khi x=-1/2
=>x2+x+1 có giá trị nhỏ nhất là 3/4 khi x=-1/2
b,A=y(y+1)(y+2)(y+3)
=>A =[y(y+3)] [(y+1)(y+2)]
=>A=(y2+3y) (y2+3y+2)
Đặt X=y2+3y+1
=>A=(X+1)(X-1)
=>A=X2-1
=>A=(y2+3y+1)2-1
MÀ (y2+3y+1)2>=0 với mọi giá trị của y
=>(y2+3y+1)2-1>=-1
Vậy GTNN của Alà -1
c,B=x3+y3+z3-3xyz
=>B=(x3+y3)+z3-3xyz
=>B=(x+y)3-3xy(x+y)+z3-3xyz
=>B=[(x+y)3+z3]-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)
=>B=(x+y+z)(x2+y2+z2-xy-xz-yz)
Tìm giá trị lớn nhất của đa thức: D = -3X (X+3) -7
Tìm giá trị nhỏ nhất của đa thức: A= X^2 + 5X +8
B= x (x trừ 6)
Tìm giá trị nhỏ nhất của các đa thức sau
\(x^2-8x-16\)
\(x^2-8x-16=x^2-2.4x+16-32=\left(x-4\right)^2-32\ge-32\)
Dấu "=" xảy ra \(\Leftrightarrow\) \(x-4=0\Leftrightarrow x=4\)
Vậy GTNN của biểu thức là -32 khi x = 4
Ta có:
\(x^2-8x-16\)
⇔ ( \(x^2-2.x.4+4^2\) )\(-16\)
⇔ \(\left(x-4\right)^2-16\)
Do \(\left(x-4\right)^2\ge0\) ⇒ \(\left(x-4\right)^2-16\ge-16\)
Dấu " = " xảy ra khi x - 4 = 0 ⇔ x = 4
Vậy GTNN của A = -16 khi x = 4
Ta có: \(x^2-8x-16\)
\(=x^2-8x+16-32\)
\(=\left(x-4\right)^2-32\ge-32\forall x\)
Dấu '=' xảy ra khi x=4