Những câu hỏi liên quan
Phùng Gia Bảo
Xem chi tiết
Darlingg🥝
15 tháng 1 2020 lúc 12:50

Áp dụng BĐT Bunhiacopxky ta có:

\(\left(a^2+2c^2\right)\left(1+2\right)\ge\left(a+2c^2\right)\)

\(\Rightarrow\sqrt{a^2+2c^2}\ge\frac{a+2c}{3}\)

\(\Rightarrow\frac{\sqrt{a^2+2c^2}}{ac}\ge\frac{a+2c}{\sqrt{3ac}}=\frac{ab+2bc}{\sqrt{3abc}}\)

\(\Rightarrow\hept{\begin{cases}\frac{\sqrt{c^2+2b^2}}{bc}\ge\frac{ac+2ab}{\sqrt{3abc}}\\\frac{\sqrt{b^2+2a^2}}{ab}\ge\frac{bc+2ac}{\sqrt{abc}}\end{cases}}\)

Ta được BĐT:

\(VT\ge\frac{1}{3}.\frac{ab+2abc+ac+2ab+bc+2ac}{abc}=\frac{1}{3}.\frac{3\left(ab+bc+ac\right)}{abc}\)

\(=\frac{1}{\sqrt{3}}.\frac{3abc}{abc}=3\)

=> đpcm

P/S: Làm tắt vs đoạn này k^o chắc mấy :V

Bình luận (0)
 Khách vãng lai đã xóa
Nyatmax
15 tháng 1 2020 lúc 13:48

Repair đề \(\Sigma_{cyc}\frac{\sqrt{2a^2+b^2}}{ab}\ge3\sqrt{3}\).Because dấu '=' xảy ra khi \(a=b=c=3\)

Không use condition của đề bài :))

Ta co:

\(VT=\sqrt{\frac{a}{b}+\frac{a}{b}+\frac{b}{a}}+\sqrt{\frac{b}{c}+\frac{b}{c}+\frac{c}{b}}+\sqrt{\frac{c}{a}+\frac{c}{a}+\frac{a}{c}}\)

\(\Rightarrow VT\ge\sqrt{3\sqrt[3]{\frac{a}{b}}}+\sqrt{3\sqrt[3]{\frac{b}{c}}}+\sqrt{3\sqrt[3]{\frac{c}{a}}}\ge3\sqrt[3]{\sqrt{3\sqrt[3]{\frac{a}{b}}.\sqrt{3\sqrt[3]{\frac{b}{c}}.\sqrt{3\sqrt[3]{\frac{c}{a}}}}}}=3\sqrt{3}\)

equelity iff \(a=b=c=3\)

Bình luận (0)
 Khách vãng lai đã xóa
Phùng Minh Quân
15 tháng 1 2020 lúc 15:02

\(ab+bc+ca=abc\)\(\Leftrightarrow\)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

\(\Sigma\frac{\sqrt{2a^2+b^2}}{ab}\ge\Sigma\frac{\sqrt{\frac{\left(2a+b\right)^2}{3}}}{ab}=\frac{1}{\sqrt{3}}\Sigma\frac{2a+b}{ab}=\frac{1}{\sqrt{3}}\Sigma\left(\frac{1}{a}+\frac{2}{b}\right)=\sqrt{3}\Sigma\frac{1}{a}=\sqrt{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
Ngoc Nhi Tran
Xem chi tiết
Akai Haruma
7 tháng 2 2020 lúc 22:26

Lời giải:
BĐT cần chứng minh tương đương với:

$\frac{1}{bc(2a^2+bc)}+\frac{1}{ac(2b^2+ac)}+\frac{1}{ab(2c^2+ab)}\geq 1(*)$

Áp dụng BĐT Cauchy-Schwarz:

$\frac{1}{bc(2a^2+bc)}+\frac{1}{ac(2b^2+ac)}+\frac{1}{ab(2c^2+ab)}\geq \frac{9}{bc(2a^2+bc)+ac(2b^2+ac)+ab(2c^2+ab)}=\frac{9}{(ab+bc+ac)^2}=\frac{9}{3^2}=1$

Do đó BĐT $(*)$ đúng. Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=1$

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Tuấn Hào
Xem chi tiết
Nguyễn Minh Quang
8 tháng 5 2021 lúc 9:35

Đặt \(x=\frac{1}{a}, y=\frac{1}{b}, z=\frac{1}{c}, \Rightarrow x+y+z=2\)

Suy ra    \(\frac{1}{a\left(2a-1\right)^2}+\frac{1}{b\left(2b-1\right)^2}+\frac{1}{c\left(2c-1\right)^2}=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\)

Ta có \(\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{\left(2-x\right)^2} .\frac{2-x}{8}.\frac{2-x}{8}}=\frac{3x}{4}.\)

\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\)\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\ge x+y+z-\frac{3}{2}=2-\frac{3}{2}=\frac{1}{2}\)

dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)hay \(a=b=c=\frac{3}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
nam do
Xem chi tiết
tthnew
20 tháng 7 2019 lúc 18:22

Em chỉ giải ra được 1 TH dấu bằng thôi: a = b = c (còn trường hợp a = b; c=0 và các hoán vị thì em chịu, vì khi xét dấu = trong bđt thì em chỉ xảy ra 1 th)

Áp dụng BĐT Cauchy-Schwarz dạng Engel;

\(VT\ge\frac{16}{a^2+b^2+c^2+\left(a+b+c\right)^2}\ge\frac{16}{\frac{\left(a+b+c\right)^2}{3}+\left(a+b+c\right)^2}\)\(=\frac{12}{\left(a+b+c\right)^2}\) (đpcm)

Đẳng thức xảy ra khi a = b = c

Bình luận (4)
Trịnh Thành Công
Xem chi tiết
Nguyễn Thiều Công Thành
20 tháng 8 2017 lúc 22:45

\(P=\frac{ab}{\sqrt{\left(c+a\right)\left(b+c\right)}}+\frac{bc}{\sqrt{\left(c+a\right)\left(a+b\right)}}+\frac{ca}{\sqrt{\left(b+c\right)\left(a+b\right)}}\)

thử dùng cô si đi

Bình luận (0)
Thắng Nguyễn
20 tháng 8 2017 lúc 22:46

sửa ab thành a2 mới làm như Thành được nhé :v

Bình luận (0)
Ngọc Mai
21 tháng 8 2017 lúc 9:44

Ta có:

\(P=\frac{ab}{\sqrt{ab+2c}}+\frac{bc}{\sqrt{bc+2a}}+\frac{ca}{\sqrt{ca+2b}}\)

\(=\frac{ab}{\sqrt{ab+c\left(a+b+c\right)}}+\frac{bc}{\sqrt{bc+a\left(a+b+c\right)}}+\frac{ca}{\sqrt{ca+b\left(a+b+c\right)}}\)

\(=\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}+\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{ca}{\sqrt{\left(b+c\right)\left(b+a\right)}}\)

\(\le\frac{1}{2}.\left(\frac{ab}{c+a}+\frac{ab}{c+b}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ca}{b+c}+\frac{ca}{b+a}\right)\)

\(=\frac{1}{2}.\left(a+b+c\right)=\frac{2}{2}=1\)

Dấu = xảy ra khi \(a=b=c=\frac{2}{3}\)

Bình luận (0)
Văn Thắng Hồ
Xem chi tiết
TítTồ
Xem chi tiết
Tran Le Khanh Linh
2 tháng 5 2020 lúc 12:56

\(\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ca}\ge\sqrt{3}\left(1\right)\)

Ta có ab+bc+ca=abc nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

\(\left(1\right)\Leftrightarrow\sqrt{\frac{1}{a^2}+\frac{2}{b^2}}+\sqrt{\frac{1}{b^2}+\frac{2}{c^2}}+\sqrt{\frac{1}{c^2}+\frac{2}{a^2}}\ge\sqrt{3}\)

Trong mặt phẳng với hệ tọa độ Oxy, với các Vecto

\(\overrightarrow{u}=\left(\frac{1}{a};\frac{\sqrt{2}}{b}\right);\left|\overrightarrow{u}\right|=\sqrt{\frac{1}{a^2}+\frac{2}{b^2}}\)

\(\overrightarrow{v}=\left(\frac{1}{b};\frac{\sqrt{2}}{c}\right)\Rightarrow\left|\overrightarrow{v}\right|=\sqrt{\frac{1}{b^2}+\frac{2}{c^2}}\)

\(\overrightarrow{w}=\left(\frac{1}{c};\frac{\sqrt{2}}{a}\right)\Rightarrow\left|\overrightarrow{w}\right|=\sqrt{\frac{1}{c^2}+\frac{2}{a^2}}\)

Ta có \(\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c};2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right)=\left(1;\sqrt{2}\right)\)

=> \(\left|\overrightarrow{u}\right|+\left|\overrightarrow{v}\right|+\left|\overrightarrow{w}\right|=\sqrt{1+2}=\sqrt{3}\)

Mặt khác \(\left|\overrightarrow{u}\right|+\left|\overrightarrow{v}\right|+\left|\overrightarrow{w}\right|\ge\left|\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}\right|\)

\(\Rightarrow\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ac}\ge\sqrt{3}\)

Dấu "=" xảy ra <=> a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
Pham Quoc Cuong
Xem chi tiết
Chàng trai bóng đêm
15 tháng 5 2018 lúc 13:52

Ta có: \(P=\frac{ab}{\sqrt{ab+2c}}+\frac{bc}{\sqrt{bc+2a}}+\frac{ca}{\sqrt{ca+2b}}\) 

\(P=\frac{ab}{\sqrt{ab+\left(a+b+c\right)c}}+\frac{bc}{\sqrt{bc+\left(a+b+c\right)a}}+\frac{ca}{\sqrt{ca+\left(a+b+c\right)b}}\) 

\(P=\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}+\frac{bc}{\sqrt{\left(b+a\right)\left(c+a\right)}}+\frac{ca}{\sqrt{\left(c+b\right)\left(a+b\right)}}\) 

\(P=\sqrt{\frac{ab}{\left(a+c\right)}.\frac{ab}{\left(b+c\right)}}+\sqrt{\frac{bc}{b+a}.\frac{bc}{c+a}}+\sqrt{\frac{ca}{c+b}.\frac{ca}{a+b}}\le\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{b+a}+\frac{bc}{c+a}+\frac{ca}{c+b}+\frac{ca}{a+b}\right)=\frac{\left(a+b+c\right)}{2}=1\)

Vậy Max P=1 khi \(a=b=c=\frac{2}{3}\)

Bình luận (0)
Riio Riyuko
15 tháng 5 2018 lúc 13:57

\(P=\Sigma\dfrac{ab}{\sqrt{ab+2c}}=\Sigma\dfrac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\Sigma\dfrac{\sqrt{ab}.\sqrt{ab}}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{1}{2}.\Sigma\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)\) \(=\dfrac{1}{2}.\left(a+b+c\right)=1\) 

Bình luận (0)
Trần
Xem chi tiết
Nguyễn Phương HÀ
13 tháng 8 2016 lúc 20:33

Hỏi đáp Toán

Bình luận (0)
Hoàng Lê Bảo Ngọc
13 tháng 8 2016 lúc 20:34

Hình như đề bài có vấn đề : thừa đk ab + bc + ac  = abc

ta có : \(\frac{\sqrt{b^2+2a^2}}{ab}\ge\frac{\sqrt{4a^2b^2}}{ab}=\frac{2ab}{ab}=2\) 

Tương tự \(\frac{\sqrt{c^2+2b^2}}{bc}\ge2\) ; \(\frac{\sqrt{a^2+2c^2}}{ac}\ge2\)

\(\Rightarrow\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ac}\ge2+2+2=6>\sqrt{3}\)

 

Bình luận (4)
Hoàng Lê Bảo Ngọc
13 tháng 8 2016 lúc 20:35

Nếu thay dấu > thành >= thì ta có cách giải khác

Bình luận (2)