\(\cos4x-\cos3x-\cot2x-\cos x=0\)
Nguồn: Học sinh TT
1) cos3x - cos4x + cos5x =0
2) sin3x + cos2x = 1 + 2sinx.cos2x
3) cos2x - cosx = 2 sin\(^2\)\(\dfrac{3x}{2}\)
4) cos\(^2\)2x + cos\(^2\)3x = sin\(^2\)x
5) sin3x.sin5x - cos4x.cos6x = 0
2.
\(sin3x+cos2x=1+2sinx.cos2x\)
\(\Leftrightarrow sin3x+cos2x=1+sin3x-sinx\)
\(\Leftrightarrow cos2x+sinx-1=0\)
\(\Leftrightarrow-2sin^2x+sinx=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
1.
\(cos3x-cos4x+cos5x=0\)
\(\Leftrightarrow cos3x+cos5x-cos4x=0\)
\(\Leftrightarrow2cos4x.cosx-cos4x=0\)
\(\Leftrightarrow\left(2cosx-1\right)cos4x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{1}{2}\\cos4x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k2\pi\\4x=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k2\pi\\x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\end{matrix}\right.\)
3.
\(cos2x-cosx=2sin^2\dfrac{3x}{2}\)
\(\Leftrightarrow2sin\dfrac{3x}{2}.sin\dfrac{x}{2}+2sin^2\dfrac{3x}{2}=0\)
\(\Leftrightarrow2sin\dfrac{3x}{2}.\left(sin\dfrac{x}{2}+sin\dfrac{3x}{2}\right)=0\)
\(\Leftrightarrow sin\dfrac{3x}{2}.sinx.cos\dfrac{x}{2}=0\)
Đến đây dễ rồi tự làm tiếp nha.
Giai các pt sau
1. \(\sqrt{3}\cos5x-2\sin3x.\cos2x-\sin x=0\)
4. \(\sin3x+\cos3x-\sin x+\cos x=\sqrt{2}\cos2x\)
6. \(\sin x+\cos x.\sin2x+\sqrt{3}\cos3x=2\left(\cos4x+\sin x^3\right)\)
tìm m để phương trình : \(\sin^6x+\cos^6x+2\cos3x\cos x-\cos4x+m=0\) có nghiệm thuộc đoạn \(\left[\frac{\pi}{4};\frac{\pi}{2}\right]\)
1) \(\sqrt{2}\sin^3\left(x+\dfrac{\pi}{4}\right)=2\sin x\)
2) \(\cos x+\cos2x+\cos3x+\cos4x=0\)
Giải phương trình: \(\sin x+\cos x\sin2x+\sqrt{3}\cos3x=2\left(\cos4x+\sin^3x\right)\)
\(\Leftrightarrow sinx\left(1-2sin^2x\right)+cosx.sin2x+\sqrt{3}cos3x=2cos4x\)
\(\Leftrightarrow sinx.cos2x+cosx.sin2x+\sqrt{3}cos3x=2cos4x\)
\(\Leftrightarrow sin3x+\sqrt{3}cos3x=2cos4x\)
\(\Leftrightarrow\frac{1}{2}sin3x+\frac{\sqrt{3}}{3}cos3x=cos4x\)
\(\Leftrightarrow sin\left(3x+\frac{\pi}{3}\right)=sin\left(\frac{\pi}{2}-4x\right)\)
\(\Leftrightarrow...\)
Giải các phương trình :
1) \(\frac{\sin^4x+\cos^4x}{\sin2x}=\frac{1}{2}\left(\tan x+\cot2x\right)\)
2) \(\frac{1}{\sin x}+\frac{1}{\sin\left(x-\frac{3\pi}{2}\right)}=4\sin\left(\frac{7\pi}{4}-x\right)\)
3)\(2\left(\cos^42x-\sin^42x\right)+\cos8x-\cos4x=0\)
4)\(\frac{\sin^4x+\cos^4x}{5\sin2x}=\frac{1}{2}\cot2x-\frac{1}{8\sin2x}\)
5)\(\sin^4x+\cos^4x-3\sin2x+\frac{5}{2}\sin^22x=0\)
Rút gọn biểu thức:
a, cos2x - 4sin2\(\frac{x}{2}\)cos2\(\frac{x}{2}\)
b, \(\frac{sin3x}{sinx}-\frac{cos3x}{cosx}\)
c, \(\frac{cosx+cos2x+cos3x+cos4x}{sinx+sin2x+sin3x+sin4x}\)
\(cos^2x-\left(2sin\frac{x}{2}cos\frac{x}{2}\right)^2=cos^2x-sin^2x=cos2x\)
\(\frac{sin3x}{sinx}-\frac{cos3x}{cosx}=\frac{sin3x.cosx-cos3x.sinx}{sinx.cosx}=\frac{sin\left(3x-x\right)}{\frac{1}{2}sin2x}=\frac{2sin2x}{sin2x}=2\)
\(\frac{cosx+cos3x+cos2x+cos4x}{sinx+sin3x+sin2x+sin4x}=\frac{2cosx.cos2x+2cosx.cos3x}{2sin2x.cosx+2sin3x.cosx}=\frac{2cosx\left(cos2x+cos3x\right)}{2cosx\left(sin2x+sin3x\right)}\)
\(=\frac{cos2x+cos3x}{sin2x+sin3x}=\frac{2cos\frac{x}{2}.cos\frac{5x}{2}}{2sin\frac{5x}{2}.cos\frac{x}{2}}=cot\frac{5x}{2}\)
chứng minh các đẳng thức sau
a) \(\cos x\cos\left(\frac{\pi}{3}-x\right)\cos\left(\frac{\pi}{3}+x\right)=\frac{1}{4}\cos3x\)
b) \(\sin5x-2\sin x\left(\cos4x+\cos2x\right)=\sin x\)
\(cosx.cos\left(\frac{\pi}{3}-x\right)cos\left(\frac{\pi}{3}+x\right)=\frac{1}{2}cosx\left(cos\frac{2\pi}{3}+cos2x\right)=-\frac{1}{4}cosx+\frac{1}{2}cosx.cos2x\)
\(=-\frac{1}{4}cosx+\frac{1}{4}\left(cos3x+cosx\right)=\frac{1}{4}cos3x\)
\(sin5x-2sinx\left(cos4x+cos2x\right)=sinx.cos4x+cosx.sin4x-2sinx.cos4x-2sinx.cos2x\)
\(=sin4x.cosx-cos4x.sinx-2sinx.cos2x=sin3x-2sinx.cos2x\)
\(=sinx.cos2x+cosx.sin2x-2sinx.cos2x\)
\(=sin2x.cosx-cos2x.sinx=sinx\)
giải các pt
a) \(cos3x+cos\left(x-120^o\right)=0\)
b) \(2cos\left(x-45^o\right).sin\left(x-45^o\right)=cos2x\)
c) \(\left(cosx+sinx\right)^2=1+cos4x\)
\(cos3x=-cos\left(x-120^0\right)\)
\(\Leftrightarrow cos3x=cos\left(x+60^0\right)\)
\(\Rightarrow\left[{}\begin{matrix}3x=x+60^0+k360^0\\3x=-x-60^0+k360^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=30^0+k180^0\\x=-15^0+k90^0\end{matrix}\right.\)
\(\Leftrightarrow sin\left(2x-90^0\right)=cos2x\)
\(\Leftrightarrow-cos2x=cos2x\)
\(\Rightarrow cos2x=0\Rightarrow2x=90^0+k180^0\)
\(\Rightarrow x=45^0+k90^0\)
\(cos^2x+sin^2x+2sinx.cosx=1+cos4x\)
\(\Leftrightarrow1+sin2x=1+cos4x\)
\(\Leftrightarrow cos4x=sin2x=cos\left(\frac{\pi}{2}-2x\right)\)
\(\Rightarrow\left[{}\begin{matrix}4x=\frac{\pi}{2}-2x+k2\pi\\4x=2x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+\frac{k\pi}{3}\\x=-\frac{\pi}{4}+k\pi\end{matrix}\right.\)