Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Nguyễn Linh Chi
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 10 2020 lúc 7:41

1.

Do \(\overrightarrow{v}\) cùng phương với \(\overrightarrow{u}\) nên \(\overrightarrow{v}=\left(a;a\right)\) với a là số thực khác 0

Chọn \(M\left(0;0\right)\) là 1 điểm thuộc d

Gọi M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in d'\)

\(\left\{{}\begin{matrix}x_{M'}=a+0=a\\y_{M'}=a+0=a\end{matrix}\right.\) \(\Rightarrow M'\left(a;a\right)\)

Thay vào pt d' ta được:

\(a+a-4=0\Rightarrow a=2\)

\(\Rightarrow\overrightarrow{v}=\left(2;2\right)\)

\(\Rightarrow\left|\overrightarrow{v}\right|=2\sqrt{2}\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
18 tháng 10 2020 lúc 7:46

2.

Gọi \(\overrightarrow{u}=\left(a;b\right)\)

Gọi \(A\left(0;1\right)\) là 1 điểm thuộc d

Gọi A' là ảnh của A qua phép tịnh tiến \(\overrightarrow{u}\Rightarrow A'\in d'\)

Ta có: \(\left\{{}\begin{matrix}x_{A'}=a\\y_{A'}=b+1\end{matrix}\right.\)

Thay tọa độ A' vào pt d' ta được: \(a+b+1-5=0\Leftrightarrow a+b=4\)

Ta có:

\(\left|\overrightarrow{u}\right|=\sqrt{a^2+b^2}\ge\sqrt{\frac{1}{2}\left(a+b\right)^2}=2\sqrt{2}\)

\(\Rightarrow\left|\overrightarrow{u}\right|_{min}=2\sqrt{2}\) khi \(a=b=2\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
18 tháng 10 2020 lúc 7:50

3.

Gọi \(\overrightarrow{v}=\left(a;b\right)\Rightarrow a^2+b^2=4\) (1)

Gọi \(A\left(-1;-1\right)\) là 1 điểm thuộc d

Gọi A' là ảnh của A qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow A'\in d'\)

Ta có: \(\left\{{}\begin{matrix}x_{A'}=-1+a\\x_{B'}=-1+b\end{matrix}\right.\)

Thay vào pt d':

\(2\left(a-1\right)+2\left(b-1\right)-1=0\)

\(\Leftrightarrow2a+2b=5\Rightarrow b=\frac{5-2a}{2}\)

Thế vào (1):

\(a^2+\left(\frac{5-2a}{2}\right)^2=4\)

\(\Leftrightarrow8a^2-20a+9=0\)

Pt trên có 2 nghiệm pb nên có 2 vecto thỏa mãn

Tran Dai Quy
Xem chi tiết
Trần Ái Linh
17 tháng 6 2021 lúc 11:23

Gọi `A(0;1)` và `B(1;3)` là 2 điểm thuộc `\Delta`

`T_(\vec v): \Delta -> \Delta'`

`<=> T_(\vec v): A(0;1) -> A'(3;0) ; B(1;3) -> B'(4;2)`

`=> \vec(A'B') (1;2)`

`=> \Delta' : 1(x-3)+2(y-0)=0 <=> x+2y-3=0`

`(C)` có: `I(1;-2)` và `R=\sqrt6 =R'`

`T_(\vec v): (C) -> (C') => T_(\vecv): I (1;-2) -> I'(4;-3)`

`=> (C'): (x-4)^2 +(y+3)^2=6`

Thầy Cao Đô
Xem chi tiết
Lê Song Phương
15 tháng 3 2023 lúc 19:30

Gọi G là trọng tâm tam giác ABC. Ta có:

\(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=2\\y_G=\dfrac{y_A+y_B+y_C}{3}=3\end{matrix}\right.\) \(\Rightarrow G\left(2;3\right)\)

Do M nằm trên \(\Delta:3x-y+1=0\) nên \(M\left(m;3m+1\right)\). Ta có \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG} \right|\) \(=3MG\)

Gọi I là tâm  tỉ cự của 2 điểm A, B ứng với bộ số \(\left(1;2\right)\) \(\Rightarrow\overrightarrow{IA}+2\overrightarrow{IB}=\overrightarrow{0}\). Điều này có nghĩa \(\overrightarrow{IB}=\dfrac{1}{3}\overrightarrow{AB}\). Mà \(\overrightarrow{AB}=\left(3;3\right)\) nên \(\overrightarrow{IB}=\left(1;1\right)\) \(\Rightarrow I\left(1;5\right)\)

Với điểm M, ta có \(\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|=\left|\left(\overrightarrow{MI}+\overrightarrow{IA}\right)+2\left(\overrightarrow{MI}+\overrightarrow{IB}\right)\right|\) \(=\left|3\overrightarrow{MI}\right|=3MI\)  (do \(\overrightarrow{IA}+2\overrightarrow{IB}=\overrightarrow{0}\))

Từ đó \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|+\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|\)

\(=3\left(MG+MI\right)\). Ta sẽ tìm GTNN của \(MG+MI\)

Ta thấy \(MG+MI\ge IG\). Ta lại có \(\left(3.2-3+1\right)\left(3.1-5+1\right)< 0\) nên I và G nằm khác phía so với đường thẳng \(\Delta:3x-y+1=0\). Do đó, \(MG+MI=IG\Leftrightarrow\) M nằm trên IG. 

Phương trình đường thẳng IG: \(\dfrac{y-3}{x-2}=\dfrac{5-3}{1-2}=-2\) \(\Leftrightarrow y-3=4-2x\) \(\Leftrightarrow2x+y-7=0\).

M thuộc IG \(\Leftrightarrow2m+\left(3m+1\right)-7=0\) \(\Leftrightarrow m=\dfrac{6}{5}\) \(\Rightarrow M\left(\dfrac{6}{5};\dfrac{23}{5}\right)\)

Vậy điểm \(M\left(\dfrac{6}{5};\dfrac{23}{5}\right)\) thỏa mãn ycbt.

 

 

trần phi yến
Xem chi tiết
Akai Haruma
29 tháng 3 2020 lúc 16:21

Lời giải:

a)

\(\overrightarrow{x}=\overrightarrow{u}-\overrightarrow{v}=(1-2, 2-2,3-(-1))=(-1,0,4)\)

b)

\(\overrightarrow{x}=\overrightarrow{u}-\overrightarrow{v}+2\overrightarrow{w}=(1-2+2.4,2-2+2.0; 3-(-1)+2(-4))\)

\(=(7, 0, -4)\)

c)

\(\overrightarrow{x}=2\overrightarrow{u}+4\overrightarrow{v}-\overrightarrow{w}=(2.1+4.2-4, 2.2+4.2-0, 2.3+4.(-1)-(-4))\)

\(=(6,12,6)\)

d)

\(2\overrightarrow{x}=3\overrightarrow{u}+\overrightarrow{w}=3(1,2,3)+(4,0,-4)=(3.1+4, 3.2+0,3.3+(-4))\)

\(=(7,6,5)\Rightarrow \overrightarrow{x}=(\frac{7}{2}, 3, \frac{5}{2})\)

e)

\(3\overrightarrow{x}=-2\overrightarrow{u}-\overrightarrow{v}+\overrightarrow{w}=-2(1,2,3)-(2,2,-1)+(4,0,-4)\)

\(=(-2,-4,-6)-(2,2,-1)+(4,0,-4)=(-2-2+4,-4-2+0,-6-(-1)+(-4))\)

\(=(0,-6,-9)\Rightarrow \overrightarrow{x}=(0,-2,-3)\)

Khách vãng lai đã xóa
Nguyễn Tấn An
Xem chi tiết
tran duc huy
Xem chi tiết
Nguyễn Quỳnh Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 11 2022 lúc 23:11

1D

2C

Phương lan
Xem chi tiết
nguyễn thái
Xem chi tiết
nguyễn thái
12 tháng 3 2019 lúc 22:07

các bạn làm hộ mình nhé . Mình sắp thi rùi