tìm x,y,z
35x = 21y = 15z và x . y . z = 576
tìm x,y,z biết
8) 35x=21y=15z và x+y-z=9
9) 10x=6y=5z và x+y-z=24
8) 35x=21y=15z và x+y-z=9
\(\frac{35x}{105}\)=\(\frac{21y}{105}\)=\(\frac{15z}{105}\)=>\(\frac{x}{3}\)=\(\frac{y}{5}\)=\(\frac{z}{7}\)và x+y-z=9
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}\)=\(\frac{y}{5}\)=\(\frac{z}{7}\)=\(\frac{x+y-z}{3+5-7}\)=\(\frac{9}{1}\)=9
Do đó
\(\frac{x}{3}\)=9=> x=3.9=27
\(\frac{y}{5}\)=9 => y=5.9=45
\(\frac{z}{7}\)=9 =>z=7.9=63
Vậy x=27; y=45; z=63
tìm x,y,z biết
8) 35x=21y=15z và x+y-z=9
9) 10x=6y=5z và x+y-z=24
8. =>\(\frac{x}{35}=\frac{y}{21}=\frac{z}{15}=>\frac{x+y-z}{35+21-15}=\frac{9}{41}\)
=>\(\frac{x}{35}=\frac{9}{41}=>x=\frac{315}{41}\)
=>\(\frac{y}{21}=\frac{9}{41}=>y=\frac{189}{41}\)
=>\(\frac{z}{15}=\frac{9}{41}=>z=\frac{135}{41}\)
vậy :\(x=\frac{315}{41};y=\frac{189}{41};z=\frac{135}{41}\)
9. =>\(\frac{x}{10}=\frac{y}{6}=\frac{z}{5}=>\frac{x+y-z}{10+6-5}=\frac{24}{11}\)
=>\(\frac{x}{10}=\frac{24}{11}=>x=\frac{240}{11}\)
=>\(\frac{y}{6}=\frac{24}{11}=>y=\frac{144}{11}\)
=>\(\frac{z}{5}=\frac{24}{11}=>z=\frac{120}{11}\)
vậy :\(x=\frac{240}{11};y=\frac{144}{11};z=\frac{120}{11}\)
Ta có: \(10x=6y=5z\Leftrightarrow\frac{x}{\frac{1}{10}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{5}}\) và \(x+y-z=24\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{1}{10}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{10}+\frac{1}{6}-\frac{1}{5}}=24:\frac{1}{15}=360\)
=> x = 360 : 10 = 36
y = 360 : 6 = 60
z = 360 : 5 = 72
8) 35x=21y=15z và x+y-z=9
\(35x=21y=15z\Leftrightarrow\frac{35x}{1}=\frac{21y}{1}=\frac{15z}{1}\Leftrightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\)
Áp dụng tc dãy tỉ bằng nhau
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{x+y-z}{3+5-7}=\frac{9}{1}=9\)
Với \(\frac{x}{3}=9\Rightarrow x=27\)Với \(\frac{y}{5}=9\Rightarrow y=45\)Với \(\frac{z}{7}=9\Rightarrow z=63\)9) 10x=6y=5z và x+y-z=24
\(10x=6y=5z\Leftrightarrow\frac{10x}{30}=\frac{6y}{30}=\frac{5z}{30}\Leftrightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\)
Áp dụng tc dãy tỉ bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}=\frac{x+y-z}{3+5-6}=\frac{24}{2}=12\)
Với \(\frac{x}{3}=12\Rightarrow x=36\)Với \(\frac{y}{5}=12\Rightarrow y=60\)Với \(\frac{z}{6}=12\Rightarrow z=72\)
Tìm x , y,z biết
1 . 35x=21y=15z và x+y-z=27
2 . 10x = 6y = 5z và x+y-z = 24
1) \(35x=21y\Rightarrow\frac{21}{35}=\frac{x}{y}=\frac{3}{5}=>\frac{x}{3}=\frac{y}{5}\) (1)
\(21y=15z\Rightarrow\frac{15}{21}=\frac{y}{z}=\frac{5}{7}\Rightarrow\frac{y}{5}=\frac{z}{7}\)(2)
Từ (1) và (2) => \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{x+y-z}{3+5-7}=\frac{27}{1}=27\)
=> \(\frac{x}{3}=27\Rightarrow x=27.3=81\)
\(\frac{y}{5}=27\Rightarrow y=27.5=135\)
\(\frac{z}{7}=27\Rightarrow z=27.7=189\)
2) \(10x=6y\Rightarrow\frac{6}{10}=\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}\) (1)
\(6y=5z\Rightarrow\frac{5}{6}=\frac{y}{z}\Rightarrow\frac{y}{5}=\frac{z}{6}\)(2)
Từ (1) và (2) => \(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\)
(còn phần dưới thì tự tính ra x, y, z đc rồi đó ^^)
8/.35x=21y=15z và x+y-z=9
9/.10x=6y=5z và x+y-z=24
8/\(35x=21y=15z\)=>\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}\)
Áp dụng t/c của dãy tỉ số ằng nhau,ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y-z}{3+5-7}=\dfrac{9}{1}=9\)
=>x=27;y=45;z=63
9/\(10x=6y=5z\)=>\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}\)
Áp dụng t/c của dãy tỉ số ằng nhau,ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x+y-z}{3+5-6}=\dfrac{24}{2}=12\)
=>x=36;y=60;z=72
Tìm \(x,y,z\) Biết \(35x=21y=15z\)
Mình không biết cái đề này có làm được hay không
Ai làm được thì giúp mình
Do 35x = 21y => \(\frac{x}{y}=\frac{21}{35}=\frac{3}{5}\)
21y = 15z => \(\frac{y}{z}=\frac{15}{21}=\frac{5}{7}\)
=> x = 3; y = 5; z = 7
TÌM X,Y,Z BIẾT
1.6x=10y=15z và x+y+z=90
2.2x=3y-2x và x+y=14
a)6x=10y=>x/10=y/6=>x/50=y/30
10y=15z=>y/15=z/10=>y/30=z/20
x+y+z/50+30+10=90/90=1
x=50;y=30;z=10
b)đề 2 có sai ko z pn
Tìm x,y,z biết: 6x=10y=15z và x+y+z=90 giúp mình với đang câng gấp!!!!
\(\hept{\begin{cases}6x=10y=15z\\x+y+z=90\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{6}}=\frac{y}{\frac{1}{10}}=\frac{z}{\frac{1}{15}}\\x+y+z=90\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{1}{6}}=\frac{y}{\frac{1}{10}}=\frac{z}{\frac{1}{15}}=\frac{x+y+z}{\frac{1}{6}+\frac{1}{10}+\frac{1}{15}}=\frac{90}{\frac{1}{3}}=270\)
\(\frac{x}{\frac{1}{6}}=270\Rightarrow x=45\); \(\frac{y}{\frac{1}{10}}=270\Rightarrow y=27\); \(\frac{z}{\frac{1}{15}}=270\Rightarrow z=18\)
Thank bạn nhiều với cho mình hỏi tại sao lại đưa x/1/6; y/1/10; z/1/15 giúp mk với
Ta có : \(6x=10y\Leftrightarrow\frac{x}{10}=\frac{y}{6}\)
\(10y=15z\Leftrightarrow\frac{y}{15}=\frac{z}{10}\)
Suy ra : \(\frac{x}{50}=\frac{y}{30}\)(*) ; \(\frac{y}{30}=\frac{z}{20}\)(**)
Từ (*) ; (**) => \(\frac{x}{50}=\frac{y}{30}=\frac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{50}=\frac{y}{30}=\frac{z}{20}=\frac{x+y+z}{50+30+20}=\frac{90}{100}=\frac{9}{10}\)
\(x=\frac{450}{10}=45;y=\frac{270}{10}=27;z=\frac{180}{10}=18\)
Tìm x,y,z biết:
a. \(x=\dfrac{y}{6}=\dfrac{z}{3}và2x-3x-4z=24\)
\(b.6x=10y=15z\) và \(x+y-z=90\)
\(c.\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}và5z-3x-4y=50\)
\(d.\dfrac{x}{4}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{3}vàx-y+100=z\)
a: 2x-3y-4z=24
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y-4z}{2\cdot1-3\cdot6-4\cdot3}=\dfrac{24}{-28}=\dfrac{-6}{7}\)
=>x=-6/7; y=-36/7; z=-18/7
b: 6x=10y=15z
=>x/10=y/6=z/4=k
=>x=10k; y=6k; z=4k
x+y-z=90
=>10k+6k-4k=90
=>12k=90
=>k=7,5
=>x=75; y=45; z=30
d: x/4=y/3
=>x/20=y/15
y/5=z/3
=>y/15=z/9
=>x/20=y/15=z/9
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)
=>x=500; y=375; z=225
Tìm x,y,z, biết : x/3=y/4=z/6 và x.y.z=576
đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{6}=k\Rightarrow x=3k;y=4k;z=6k\)
thay x=3k;y=4k;z=6k vào x.y.z=576 ta được:
3k.4k.6k=576
72k3=576
k3=576:72
k3=8
k3=23
=>k=2
=>x=3.2=6
y=4.2=8
z=6.2=12
Ta co :\(\frac{x}{3}=\frac{y}{4}=\frac{z}{6}\) va x.y.z = 576
Dat :\(\frac{x}{3}=\frac{y}{4}=\frac{z}{6}=k\)
x=3k
y=4k
z=6k
x.y.z=72k3
576 =72k3
k3 = 8
=>k =2
Voi : k=2 \(\Rightarrow x=2.3=6;y=2.4=8;z=2.6=12\)
\(\)