Phân tích đa thức thành nhân tử
x^2 + 1/x^2 - 9/2(x+1/x) + 7
Các bn lm ơn giúp mk nha
phân tích đa thức thành nhân tử
a. x^3+x^2y-x^2z-xyz
b.x^2-6x+9-9y^2
c.x^2+9x+20
d.x^4+4
giúp mk với mk chỉ có 20p lm bài thui giúp mk nha cảm ơn mn nhìu
a) \(x^3+x^2y-x^2z-xyz\)
\(=x^2\left(x+y\right)-xz\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xz\right)\)
\(=x\left(x+y\right)\left(x-z\right)\)
b) \(x^2-6x+9-9y^2\)
\(=\left(x^2-2\cdot x\cdot3+3^2\right)-\left(3y\right)^2\)
\(=\left(x-3\right)^2-\left(3y\right)^2\)
\(=\left(x-3-3y\right)\left(x-3+3y\right)\)
c) \(x^2+9x+20\)
\(=x^2+5x+4x+20\)
\(=x\left(x+5\right)+4\left(x+5\right)\)
\(=\left(x+5\right)\left(x+4\right)\)
d) \(x^4+4\)
\(=\left(x^2\right)^2+2\cdot x^2\cdot2+4-2\cdot x^2\cdot2\)
\(=\left(x^2+2\right)-\left(2x\right)^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
a/\(x^3+x^2y-x^2z-xyz\)
\(=\left(x^3-x^2y\right)+\left(x^2y-xyz\right)\)
\(=x^2\left(x-z\right)+xy\left(x-z\right)\)
\(=\left(x-z\right)\left(x^2+xy\right)\)
b/\(x^2-6x+9-9y^2\)
\(=\left(x^2-6x+9\right)-9y^2\)
\(=\left(x-3\right)^2-\left(3y\right)^2\)
\(=\left(x-3+3y\right)\left(x-3-3y\right)\)
c/\(x^2+9x+20\)
\(=x^2+4x+5x+20\)
\(=\left(x^2+4x\right)+\left(5x+20\right)\)
\(=x\left(x+4\right)+5\left(x+4\right)\)
\(=\left(x+5\right)\left(x+4\right)\)
d/\(x^4+4\)
\(=x^4+4x^2-4x^2+4\)
\(=\left(x^2+4x^2+4\right)-4x^2\)
\(=\left(x+2\right)^2-\left(2x\right)^2\)
\(=\left(x+2-2x\right)\left(x+2+2x\right)\)
\(a,x^3+x^2y-x^2z-xyz=x^2\left(x+y\right)-xz\left(x+y\right).\)
\(=\left(x+y\right)\left(x^2-xz\right)\)
\(=x\left(x+y\right)\left(x-z\right)\)
\(b,x^2-6x+9-9y^2=\left(x-3\right)^2-9y^2\)
\(=\left(x-3+3y\right)\left(x-3-3y\right)\)
\(c,x^2+9x+20=\left(x^2+8x+16\right)+\left(x+4\right)\)
\(=\left(x+4\right)^2+\left(x+4\right)\)
\(=\left(x+4\right)\left(x+4+1\right)=\left(x+4\right)\left(x+5\right)\)
\(d,x^4+4=\left(x^2\right)^2+2^2\)
\(=\left(x^2+2\right)^2-4x^2\)
\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)
Mọi người giúp em giải bài này với ạ. Em cảm ơn
1. Phân tích đa thức sau thành nhân tử
x^3 - x^2y + 3x - 3y
\(x^3-x^2y+3x-3y\)
\(=x^2\left(x-y\right)+3\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+3\right)\)
\(=x^2\left(x-y\right)+3\left(x-y\right)=\left(x^2+3\right)\left(x-y\right)\)
\(x^3-x^2y+3x-3y=x^2\left(x-y\right)+3\left(x-y\right)=\left(x-y\right)\left(x^2+3\right)\)
phân tích đa thức thành nhân tử
x^2-16-y^2+8y
Thu gọn
2x(3x+1)+(x+3)(2x-5)
(x+5)^2-(4x-1)(4x+1)
Câu 1:
\(=x^2-\left(y-4\right)^2\)
\(=\left(x-y+4\right)\cdot\left(x+y-4\right)\)
Phân tích đa thức thành nhân tử
x^2-4y^2+x+2y
x2 - 4y2 + x + 2y
= ( x2 - 4y2 ) + ( x + 2y )
= ( x - 2y ) ( x + 2y ) + ( x + 2y )
= ( x + 2y ) ( x - 2y + 1 )
Phân thức đa thức thành nhân tử
x\(^4\)+x\(^3\)+2x\(^2\)+x+1
\(x^4+x^3+2x^2+x+1=\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\\ =x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2+1\right)\left(x^2+x+1\right)\)
Dễ thấy \(x^2+1>0\); \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) nên ta không thể phân tích thêm được nữa.
Vậy \(x^4+x^3+2x^2+x+1=\left(x^2+1\right)\left(x^2+x+1\right)\).
Phân tích đa thứ thành nhân tử
x^3(2+x)^2-(x+2)^2+1-x^3
\(x^3\left(2+x\right)^2-\left(x+2\right)^2+1-x^3\\ =\left(x+2\right)^2\left(x^3-1\right)-\left(x^3-1\right)\\ =\left[\left(x+2\right)^2-1\right]\left(x^3-1\right)\\ =\left(x-1\right)\left(x^2+x+1\right)\left(x^2+4x+3\right)=\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x^2+x+1\right)\)
phân tích đa thức thành nhân tử
x^2(x-3)-4x+12
\(x^2\left(x-3\right)-4x+12=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
=x²(x-3)-4x+3.4
=x²(x-3)-4(x+3)
=x²(x-3)+4(x-3)
=(x-3)(x²+4)
=(x-3)(x²+2²)
=(x-3)(x-2)(x+2)
Phân tích đa thức thành nhân tử
x^3-2xy-x^2y+2y^2
\(x^3-2xy-x^2y+2y^2=\left(x^3-x^2y\right)-\left(2xy-2y^2\right)\)
\(=x^2\left(x-y\right)-2y\left(x-y\right)=\left(x^2-2y\right)\left(x-y\right)\)
\(=x^2\left(x-y\right)-2y\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-2y\right)\)
Phân tích đa thức thành nhân tử
x^5+x+1
x^8+x+1
\(x^5+x+1\)
\(=x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)