\(4sin^3x+3sin^2x.cosx-sinx-cos^3x=0\)
sin^3 x +cos^3 x -3sinx cosx+1=0
3 cosx -3sin2x= √3(cos2x+sinx)
4sin^3x +3sin^2x cosx -sinx-cos^3x=0
√3sin4x-cos4x=sinx- √3cosx
m.n giúp mk chứng minh với ạ
Giải các phương trình sau:
a.\(2sin^3x+4cos^3x=3sinx\)
b.\(3sin^2\frac{x}{2}cos\left(\frac{3\pi}{2}+\frac{x}{2}\right)+3sin^2\frac{x}{2}cos\frac{x}{2}=sin\frac{x}{2}cos^2\frac{x}{2}+sin^2\left(\frac{x}{2}+\frac{\pi}{2}\right)\)
c.\(4sin^3x+3sin^2xcosx-sinx-cos^3x=0\)
d.sin4x-3sin 2xcos2x-4sinxcos3x-3cos4x=0
MỌI NGƯỜI GIÚP MÌNH VỚI MÌNH CẢM ƠN
d.
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^4x\)
\(tan^4x-3tan^2x-4tanx-3=0\)
\(\Leftrightarrow\left(tan^2x+tanx+1\right)\left(tan^2x-tanx-3\right)=0\)
\(\Leftrightarrow tan^2x-tanx-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=\frac{1-\sqrt{13}}{2}\\tanx=\frac{1+\sqrt{13}}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(\frac{1-\sqrt{13}}{2}\right)+k\pi\\x=arctan\left(\frac{1+\sqrt{13}}{2}\right)+k\pi\end{matrix}\right.\)
mọi người giúp hộ mình nhanh với
a.
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)
\(2tan^3x+4=3tanx\left(1+tan^2x\right)\)
\(\Leftrightarrow2tan^3x+4=3tanx+3tan^3x\)
\(\Leftrightarrow tan^3x+3tanx-4=0\)
\(\Leftrightarrow\left(tanx-1\right)\left(tan^2x+tanx+4\right)=0\)
\(\Leftrightarrow tanx=1\Rightarrow x=\frac{\pi}{4}+k\pi\)
giải phương trình : cos^3-4sin^3x-3cosxsin^2x+sinx=0
1)cho tanx = 3 Tính B = \(\dfrac{2sinx-3cosx}{sinx+cox}\)
2) cho tanx = -1 Tính I = \(\dfrac{4sin^3x+cos^3x}{sinx+3cosx}\)
1: tan x=3 nên sin x/cosx=3
=>sin x=3*cosx
\(B=\dfrac{2\cdot sinx-3cosx}{sinx+cosx}=\dfrac{2\cdot3\cdot cosx-3cosx}{3cosx+cosx}\)
\(=\dfrac{2\cdot3-3}{3+1}=\dfrac{3}{4}\)
2: tan x=-1 nên sin x/cosx=-1
=>sinx=-cosx
\(I=\dfrac{4\cdot\left(-cosx\right)^3+\left(cosx\right)^3}{-cosx+3\cdot cosx}=\dfrac{-3\cdot cos^3x}{2cosx}=-\dfrac{3}{2}\cdot cos^2x\)
\(1+tan^2x=\dfrac{1}{cos^2x}\)
=>\(\dfrac{1}{cos^2x}=1+1=2\)
=>\(cos^2x=\dfrac{1}{2}\)
=>I=-3/2*1/2=-3/4
giúp mik vs1: \(cos^3x+4sin^3x-3cosxsin^2x+sinx\)
2; \(sin^3x\left(x+\dfrac{\pi}{4}\right)=\sqrt{2}sinx\)
3; \(2cos^3x=sin3x\)
4; \(4sin^3x+3cos^3x-3sinx-sin^2xcosx\)
cho tanx=3. tính B= \(\frac{sinx+cosx}{2sinx+cosx}\), C= \(\frac{4sin^3x+cos^3x}{sinx+3cosx}\)
\(B=\frac{sinx+cosx}{2sinx+cosx}=\frac{\frac{sinx}{cosx}+\frac{cosx}{cosx}}{\frac{2sinx}{cosx}+\frac{cosx}{cosx}}=\frac{tanx+1}{2tanx+1}=\frac{3+1}{2.3+1}=...\)
\(C=\frac{\frac{4sin^3x}{cos^3x}+\frac{cos^3x}{cos^3x}}{\frac{sinx}{cos^3x}+\frac{3cosx}{cos^3x}}=\frac{4tan^3a+1}{tanx.\frac{1}{cos^2x}+3.\frac{1}{cos^2x}}=\frac{4tan^3x+1}{tanx\left(1+tan^2x\right)+3.\left(1+tan^2x\right)}\)
\(=\frac{4.3^3+1}{3\left(1+3^2\right)+3\left(1+3^2\right)}=...\)
Giải PT
a) 3cos26x + 8sin 3x cos 3x - 4 =0
b) sinx + 4cos2x + 1 = 0
c) \(\frac{1}{cos^2x}\)+ tanx - 1 = 0
d) sin x + 3sin\(\frac{x}{2}\)= 0
câu 1:xét sinx=o
xét sinx khác 0
chia phương trình cho cos3x
ta được 1 phương trình mới:
4+3tanx-\(\frac{1}{sin^2x}\)-tan3x=0
<=>4+3tanx-(1+cot2x)-tan3x=0
<=>4+3tanx-1-\(\frac{1}{tan^2x}\)-tan3x=o
nhân cho tan2x ta được 1 phương trình bậc 5 với tanx
giải các phường trình sau:
a/\(sin^3x+cos^3x=sinx+cosx\)
b/\(sin^3x+2sin^2xcosx-3cos^3x=0\)
c/\(3cos^4x-4cos^2xsin^2x-sin^4x=0\)
d/\(sinx-4sin^3x+cosx=0\)
mọi người giúp em với em cảm ơn mọi người nhìu
\(a\text{) }sin^3x+cos^3x=sinx+cosx\\ \Leftrightarrow\left(sinx+cosx\right)\left(sin^2x-sinx\cdot cosx+cos^2x\right)=sinx+cosx\\ \Leftrightarrow-\frac{1}{2}sin2x\left(sinx+cosx\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}sinx=-cosx=sin\left(x-\frac{\pi}{2}\right)\\sin2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3\pi}{2}-x+a2\pi\\2x=b\pi\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\frac{3\pi}{4}+a\pi\\x=\frac{b\pi}{2}\end{matrix}\right.\)
\(\text{b) }sin^3x+2sin^2x\cdot cosx-3cos^3x=0\\ \Leftrightarrow\left(sin^3x-cos^3x\right)+2cosx\cdot\left(sin^2x-cos^2x\right)=0\\ \Leftrightarrow\left(sinx-cosx\right)\left(sinx\cdot cosx+1\right)+\left(sinx-cosx\right)\left(2sinx\cdot cosx+2cos^2x\right)=0\\ \Leftrightarrow\left(sinx-cosx\right)\left(3sinx\cdot cosx+1+2cos^2x\right)=0\\ \Leftrightarrow\left(sinx-cosx\right)\left(\frac{3}{2}sin2x+2+cos2x\right)=0\)
Với \(sinx-cosx=0\)
\(\Leftrightarrow sinx=cosx=sin\left(\frac{\pi}{2}-x\right)\\ \Leftrightarrow x=\frac{\pi}{2}-x+a2\pi\\ \Leftrightarrow x=\frac{\pi}{4}+a\pi\)
Với \(\frac{3}{2}sin2x+2+cos2x=0\)
\(\Leftrightarrow sin^22x+\left(\frac{3}{2}sin2x+2\right)^2=1\left(VN\right)\)
\(\text{c) }3cos^4x-4cos^2x\cdot sin^2x-sin^4x=0\)
Nhận thấy sinx=0 không là nghiệm pt.
Chia cả 2 vế cho sin4x ta được
\(pt\Leftrightarrow\frac{3cos^4x}{sin^4x}-\frac{4cos^2x}{sin^2x}-1=0\\ \Leftrightarrow3cot^4x-4cot^2x-1=0\\ \Leftrightarrow cot^2x=\frac{2+\sqrt{7}}{3}\\ \Leftrightarrow cotx=\pm\sqrt{\frac{2+\sqrt{7}}{3}}\\ \Leftrightarrow x=arccot\left(\pm\sqrt{\frac{2+\sqrt{7}}{3}}\right)+k2\pi\)
d) kiểm tra đề.