Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Kieu Chi
Xem chi tiết
Nguyễn Hoàng Anh Thư
Xem chi tiết
Kurosaki Akatsu
20 tháng 7 2017 lúc 21:01

Cậu vào đây nha ! 

Câu hỏi của doanthihuong - Toán lớp 7 - Học toán với OnlineMath

Việt Nguyễn
Xem chi tiết
Ngân Hoàng Xuân
Xem chi tiết
Hương Trà
4 tháng 2 2016 lúc 23:14

Hỏi đáp Toán

Herobrine PRO player Min...
9 tháng 3 2019 lúc 15:00
https://i.imgur.com/3Wy6g2D.jpg
svtkvtm
9 tháng 3 2019 lúc 17:31

\(\frac{x}{2x+y+z}=\frac{x}{\left(x+y\right)+\left(x+z\right)}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\le\frac{1}{16}\left(\frac{x}{x}+\frac{x}{y}+\frac{x}{x}+\frac{x}{z}\right)=\frac{1}{16}\left(2+\frac{x}{y}+\frac{x}{z}\right)\)

\(tươngtự:\frac{y}{2y+z+x}\le\frac{1}{16}\left(2+\frac{y}{z}+\frac{y}{x}\right);\frac{z}{2z+x+y}\le\frac{1}{16}\left(2+\frac{z}{x}+\frac{z}{y}\right).\text{Cộng vế theo vế ta được:}\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+y+x}\le\frac{1}{16}\left(2+2+2+\frac{x}{y}+\frac{y}{x}+\frac{z}{x}+\frac{x}{z}+\frac{y}{z}+\frac{z}{y}\right)=\frac{1}{16}\left[6+\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)\right]\ge\frac{1}{16}\left(6+2\sqrt{\frac{xy}{xy}}+2\sqrt{\frac{xz}{xz}}+2\sqrt{\frac{yz}{yz}}\right)=\)

\(=\frac{12}{16}=\frac{3}{4}\Rightarrow\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\le\frac{3}{4}\left(\text{đpcm}\right)\)

thien ty tfboys
Xem chi tiết
Trần Thị Loan
12 tháng 6 2015 lúc 21:30

bạn có thể tham khảo bài giải của c trong câu hỏi tương tự 

hoàng quốc sơn
Xem chi tiết
Đỗ Thị Ngọc Trinh
16 tháng 1 2016 lúc 17:19

chtt

hoàng quốc sơn
16 tháng 1 2016 lúc 20:31

Nhanh to cho card 20

 

Nguyễn Ngọc Tho
Xem chi tiết
Nguyễn Anh Quân
28 tháng 2 2018 lúc 21:32

Áp dụng tính chất : 1/a+b < = 1/4.(1/a+1/b) thì :

x/2x+y+z = x.(1/2x+y+z) = x.[1/(x+y)+(x+z)] < = x/4.(1/x+y + 1/x+z)

Tương tự : ..........

=> x/2x+y+z + y/x+2y+z + z/x+y+2z < = 1/4.(x/x+y + x/x+z + y/y+x + y/y+z + z/z+x + z/x+y )

                                                         = 1/4. [ ( x/x+y + y/x+y ) + ( y/y+z + z/z+y ) + ( z/z+x + x/x+z )

                                                         = 1/4.(1+1+1) = 3/4

Dấu "=" xảy ra <=> x=y=z

Vậy ..........

Tk mk nha

KAl(SO4)2·12H2O
28 tháng 2 2018 lúc 21:50

Đặt BT là P:

\(\text{P}=\frac{x}{\left(2x+y+z\right)}-1+\frac{y}{2y+z+x}-1+\frac{z}{\left(2z+x+y\right)}-1+3\)

\(\text{P}=-\frac{\left(x+y+z\right)}{\left(2x+y-z\right)}-\frac{\left(x+y+z\right)}{\left(2y+z+x\right)}-\frac{\left(x+y+z\right)}{\left(2z+x+y\right)}+3\)

\(\text{P}=-\left(x+y+z\right).\left[\frac{1}{\left(2x+y+z\right)}+\frac{1}{\left(2y+z+x\right)}+\frac{1}{\left(2z+x+y\right)}\right]+3\)

Co-si 3 số, ta có:

\(2x+y+z+2y+z+x+2z+x+y\ge3.\sqrt[3]{\left(2x+y+z\right)\left(2y+z+x\right)\left(2z+x+y\right)}\)

\(\Rightarrow4\left(x+y+z\right)\ge3.\sqrt[3]{\left(2x+y+z\right)\left(2y+z+x\right)\left(2z+x+y\right)}\)(1)

Co-si tiếp cho 3 số, ta có:

\(\frac{1}{\left(2x+y+z\right)}+\frac{1}{\left(2y+z+x\right)}+\frac{1}{\left(2z+x+y\right)}\ge3.\sqrt[3]{\frac{1}{\left(2x+y+z\right)}+\frac{1}{\left(2y+z+x\right)}+\frac{1}{\left(2z+x+y\right)}}\)(2)

Lấy (1) và (2) ta có: \(4\left(x+y+z\right)\left[\frac{1}{\left(2x+y+z\right)}+\frac{1}{\left(2y+z+x\right)}+\frac{1}{\left(2z+x+y\right)}\right]\ge9\)

\(\Rightarrow-\left(x+y+z\right).\left[\frac{1}{\left(2x+y+z\right)}+\frac{1}{\left(2y+z+x\right)}+\frac{1}{\left(2z+x+y\right)}\right]\le-\frac{9}{4}\)

Thay P, ta có:

\(\text{P}\le-\frac{9}{3}+3=\frac{3}{4}\left(ĐPCM\right)\)

Dấu "=" xảy ra khi x = y = z.

Kiên-Messi-8A-Boy2k6
13 tháng 5 2018 lúc 21:03

trả lời

x=y=z

hokt tốt

Kiên-Messi-8A-Boy2k6
Xem chi tiết
Girl
6 tháng 11 2018 lúc 21:07

\(\frac{x}{2x+y+z}=\frac{x}{\left(x+y\right)+\left(x+z\right)}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

\(\frac{y}{2y+x+z}=\frac{y}{\left(x+y\right)+\left(y+z\right)}\le\frac{1}{4}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)\)

\(\frac{z}{2z+x+y}=\frac{z}{\left(x+z\right)+\left(y+z\right)}\le\frac{1}{4}\left(\frac{z}{x+z}+\frac{z}{y+z}\right)\)

Cộng theo vế:

\(\frac{x}{2x+y+z}+\frac{y}{2y+x+z}+\frac{z}{2z+x+y}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{y}{x+y}+\frac{y}{y+z}+\frac{z}{y+z}+\frac{x}{x+z}+\frac{z}{x+z}\right)=\frac{3}{4}\)

Kiệt Nguyễn
9 tháng 8 2020 lúc 20:40

Đặt \(\hept{\begin{cases}2x+y+z=a\\2y+z+x=b\\2z+x+y=c\end{cases}}\Rightarrow a+b+c=4\left(x+y+z\right)=\)

\(4\left(a-x\right)=4\left(b-y\right)=4\left(c-z\right)\Rightarrow\hept{\begin{cases}4x=3a-b-c\\4y=3b-c-a\\4z=3c-a-b\end{cases}}\)

Lúc đó thì \(4VT=\frac{3a-b-c}{a}+\frac{3b-c-a}{b}+\frac{3c-a-b}{c}\)

\(=3-\frac{b}{a}-\frac{c}{a}+3-\frac{c}{b}-\frac{a}{b}+3-\frac{a}{c}-\frac{b}{c}\)

\(=9-\left(\frac{a}{b}+\frac{b}{a}\right)-\left(\frac{b}{c}+\frac{c}{b}\right)-\left(\frac{c}{a}+\frac{a}{c}\right)\le3\)

\(\Rightarrow VT\le\frac{3}{4}\)

Đẳng thức xảy ra khi a = b = c hay x = y = z

Khách vãng lai đã xóa
thanh ngọc
Xem chi tiết
Mặc Chinh Vũ
9 tháng 3 2019 lúc 15:41

\(-\text{Theo bài ra: }D=\dfrac{x}{2x+y+z}+\dfrac{y}{2y+z+x}+\dfrac{z}{2z+x+y}\)

\(-\text{Đặt }\left\{{}\begin{matrix}a=2x+y+z\\b=2y+z+x\\c=2z+x+y\end{matrix}\right.\Rightarrow a+b+c=4\left(x+y+z\right)\)

\(\Rightarrow a-\dfrac{a+b+c}{4}=x\)

\(\Rightarrow x=\dfrac{3a-b-c}{4}\)

\(-\text{Tương tự: }\left\{{}\begin{matrix}y=\dfrac{3b-c-a}{4}\\z=\dfrac{3c-a-b}{4}\end{matrix}\right.\)

Suy ra \(D=\dfrac{3a-b-c}{4a}+\dfrac{3b-3c-a}{4b}+\dfrac{3c-a-b}{4c}\)

\(D=\dfrac{9}{4}-\left(\dfrac{b}{4a}+\dfrac{c}{4a}+\dfrac{c}{4b}+\dfrac{a}{4b}+\dfrac{a}{4c}+\dfrac{b}{4c}\right)\)

\(D=\dfrac{9}{4}-\dfrac{1}{4}\left[\left(\dfrac{b}{a}+\dfrac{a}{b}\right)+\left(\dfrac{c}{a}+\dfrac{a}{c}\right)+\left(\dfrac{c}{b}+\dfrac{b}{c}\right)\right]\)

- Theo bất đẳng thức Cosi, ta có: \(\left\{{}\begin{matrix}\dfrac{b}{a}+\dfrac{a}{b}\ge2\\\dfrac{c}{a}+\dfrac{a}{b}\ge2\\\dfrac{c}{b}+\dfrac{b}{c}\ge2\end{matrix}\right.\)

Suy ra \( D\le\dfrac{9}{4}-\dfrac{1}{4}.6=\dfrac{9}{4}-\dfrac{6}{4}=\dfrac{3}{4}\)

Vậy \(D\le\dfrac{3}{4}\left(đpcm\right)\)