Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngân Hoàng Xuân

Cho x;y;z là các số dương 

CMR: \(\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\le\frac{3}{4}\)

Hương Trà
4 tháng 2 2016 lúc 23:14

Hỏi đáp Toán

Herobrine PRO player Min...
9 tháng 3 2019 lúc 15:00
https://i.imgur.com/3Wy6g2D.jpg
svtkvtm
9 tháng 3 2019 lúc 17:31

\(\frac{x}{2x+y+z}=\frac{x}{\left(x+y\right)+\left(x+z\right)}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\le\frac{1}{16}\left(\frac{x}{x}+\frac{x}{y}+\frac{x}{x}+\frac{x}{z}\right)=\frac{1}{16}\left(2+\frac{x}{y}+\frac{x}{z}\right)\)

\(tươngtự:\frac{y}{2y+z+x}\le\frac{1}{16}\left(2+\frac{y}{z}+\frac{y}{x}\right);\frac{z}{2z+x+y}\le\frac{1}{16}\left(2+\frac{z}{x}+\frac{z}{y}\right).\text{Cộng vế theo vế ta được:}\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+y+x}\le\frac{1}{16}\left(2+2+2+\frac{x}{y}+\frac{y}{x}+\frac{z}{x}+\frac{x}{z}+\frac{y}{z}+\frac{z}{y}\right)=\frac{1}{16}\left[6+\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)\right]\ge\frac{1}{16}\left(6+2\sqrt{\frac{xy}{xy}}+2\sqrt{\frac{xz}{xz}}+2\sqrt{\frac{yz}{yz}}\right)=\)

\(=\frac{12}{16}=\frac{3}{4}\Rightarrow\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\le\frac{3}{4}\left(\text{đpcm}\right)\)


Các câu hỏi tương tự
Nguyễn Ngọc Quý
Xem chi tiết
Lệ Mỹ
Xem chi tiết
Hưng Gà
Xem chi tiết
Ngân Hoàng Xuân
Xem chi tiết
Lập nick ms
Xem chi tiết
phantuananh
Xem chi tiết
Đồng Hồ Cát 3779
Xem chi tiết
Phạm Thị Nguyệt Hà
Xem chi tiết
nguyễn thị như ý
Xem chi tiết