cho x,y,z>0 thỏa mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\)
Cmr: \(\sqrt{\frac{xy}{x+y+2z}}+\sqrt{\frac{yz}{y+z+2x}}+\sqrt{\frac{xz}{x+z+2y}}\le\frac{1}{2}\)
Cho x, y, z là ba số dương thỏa mãn \(x^2+y^2+z^2=1\)
Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+2xyz\)
1.Cho x, y, z > 0 thỏa \(x^2+y^2+z^2=x^2y^2z^2\). Tìm GTNN của \(P=\frac{x^2}{y^4}+\frac{y^2}{z^4}+\frac{z^2}{x^4}\)
2. Cho a,b,c> 0 và a + b + c = 0
Chứng minh: \(\frac{bc}{b+c+2a}+\frac{ca}{c+a+2b}+\frac{ab}{a+b+2c}\le1\)
cho x,y,z>0 và xyz=1. Cmr: \(\frac{x^2}{1+y}+\frac{y^2}{1+z}+\frac{z^2}{1+x}\ge\frac{3}{2}\)
cho các số thực không âm đôi một khác nhau thỏa mãn \(\left(x+z\right)\left(z+y\right)=1\)
Cmr: \(\frac{1}{\left(x-y\right)^2}+\frac{1}{\left(x+z\right)^2}+\frac{1}{\left(z+y\right)^2}\ge4\)
Cho x, y, z là các số khác không. Chứng minh rằng:
Nếu \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) thì \(\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=xyz\)
Giúp với!!
Giải hệ phương trình \(\left\{{}\begin{matrix}x+y^2+z^3=14\\\left(\frac{1}{2x}+\frac{1}{3y}+\frac{1}{6z}\right)\left(\frac{x}{2}+\frac{y}{3}+\frac{z}{6}\right)=1\end{matrix}\right.\)
giải hệ phương trình
1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\)
3 , \(\left\{{}\begin{matrix}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{6}{5}\\\frac{zx}{z+x}=\frac{3}{4}\end{matrix}\right.\)
4 , \(\left\{{}\begin{matrix}2xy-3\frac{x}{y}=15\\xy+\frac{x}{y}=15\end{matrix}\right.\)
5 , \(\left\{{}\begin{matrix}x+y+3xy=5\\x^2+y^2=1\end{matrix}\right.\)
6 , \(\left\{{}\begin{matrix}x+y+xy=11\\x^2+y^2+3\left(x+y\right)=28\end{matrix}\right.\)
7, \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)
8, \(\left\{{}\begin{matrix}x+y+xy=11\\xy\left(x+y\right)=30\end{matrix}\right.\)
9 , \(\left\{{}\begin{matrix}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{matrix}\right.\)
cho x,y,z \(\in\left[1;2\right]\) tìm GTLN của P=\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)