Choi x,y,z thoả mãn điều kiện xyz=144. Tìm giá trị
\(P=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+12}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{12\sqrt{z}}{\sqrt{xz}+12\sqrt{x}+12}\)
Cho x,y,z > 0 thỏa mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2017\)
Tìm GTNN của \(A=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
cho x,y,z là các số dương thỏa mãn: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
CMR: \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\)
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\frac{8}{3}\left(x+y+z\right)\sqrt[3]{x^2y^2z^2}\)
Cho x,y,x là các sô thực dương. CMR \(\dfrac{2\sqrt{x}}{x^3+y^2}+\dfrac{2\sqrt{y}}{y^3+z^2}+\dfrac{2\sqrt{z}}{z^3+x^2}\le\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)
Cho x, y, z là các số thực thuộc (0;1) thỏa mãn điều kiện \(\left(x^3+y^3\right)\left(x+y\right)=xy\left(1-x\right)\left(1-y\right)\)
Tìm giá trị lớn nhất của biểu thức \(P=\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+3xy-\left(x^2+y^2\right)\)
1)\(\begin{cases}x+\sqrt{x^2+1}=y+\sqrt{y^2-1}\left(1\right)\\3\sqrt{y-1}+\sqrt{x}=2\sqrt{y+1}\left(2\right)\end{cases}\) nhân liên hợp pt 1 đc (\(\left(x^2-y^2+1\right)\left(\frac{1}{x+\sqrt{y^2-1}}+\frac{1}{\sqrt{x^2+1}+y}\right)\) thì TH1 \(x^2-y^2+1\) lm ntn
2\(\begin{cases}\sqrt{x^2+xy+2y^2}+\sqrt{xy}=3y\\\sqrt{y-1}+\sqrt{x-1}+x+y=6\end{cases}\)
3\(\begin{cases}\frac{\sqrt{x^2+5}}{x}+\frac{\sqrt{y^2+3}}{y}=\frac{7}{2}\\x\sqrt{x^2+5}+y\sqrt{y^2+3}=3+x^2+y^2\end{cases}\)
giải hpt:1)\(\begin{cases}\text{x+y+xy(2x+y)=5xy }\\\text{x+y+xy(3x-y)=4xy}\end{cases}\)
2)\(\begin{cases}\left(2x+y+1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{cases}\)
3)\(\begin{cases}\sqrt{9x+\frac{y}{x}}+2.\sqrt{y+\frac{2x}{y}}=4\\\left(\frac{2x}{y^2}-1\right)\left(\frac{y}{x^2}-9\right)=18\end{cases}\)
cho \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{x+y+z}{2}\)
vậy : x02 +y02+z02 =?
Giải giùm mình vs !!! Thanks trước ak