Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nobitaa's Tồ
Bài 1: Cho phương trình: x2 - 2(m+1)x + m - 2 0a) Chứng tỏ phương trinhfluoon có nghiệm với mọi mb) Giả sử pt có hai ngiệm x1; x2. Tìm một hề thức giữa x1; x2 mà không phụ thuộc vào mBài 2:                                        Bảng giá bán lẻ điện sinh hoạ Mức sử dụng Giá cũ (đồng) Giá mới (đồng) 50 kwwh đầu tiên 1484 1549 51 - 100 1533 1600 101 - 200 1786 1858 201 - 300 2242 2340 301 - 400 2503 2615 401 đầu tiên 2587 2701 Theo quyết định của bộ công thương ban hành giá bán lẻ điện sinh hoạt...
Đọc tiếp

Những câu hỏi liên quan
Vân Huỳnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 5 2023 lúc 21:07

a: Δ=(m+1)^2-4m=(m-1)^2>=0

=>Phương trình luôn có nghiệm

b: x1^2+x2^2+3x1x2=5

=>(x1+x2)^2+x1x2=5

=>(m+1)^2+m=5

=>m^2+3m-4=0

=>(m+4)(m-1)=0

=>m=1 hoặc m=-4

cute
Xem chi tiết
Nguyễn Thị Ngọc Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 14:39

a: \(\text{Δ}=\left(2m-2\right)^2-4\cdot\left(-m\right)\)

\(=4m^2-8m+4+4m\)

\(=4m^2-4m+4\)

\(=4\left(m^2-m+1\right)\)

\(=4\left(m-\dfrac{1}{2}\right)^2+3\ge3>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

b: \(A=\left(x_1+x_2\right)^2-8x_1x_2\)

\(=\left[-2\left(m-1\right)\right]^2-8\cdot\left(-m\right)\)

\(=\left(2m-2\right)^2+8m=4m^2+4\)

Tiểu Bạch Kiểm
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 5 2021 lúc 11:07

a) Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-m\right)\)

\(=\left(2m-2\right)^2+4m\)

\(=4m^2-8m+4+4m\)

\(=4m^2-4m+4\)

\(=4m^2-4m+1+3\)

\(=\left(2m-1\right)^2+3>0\forall x\)

Do đó: Phương trình luôn có hai nghiệm x1,x2 với mọi m(Đpcm)

Nguyễn Lê Phước Thịnh
17 tháng 5 2021 lúc 11:12

b) Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1\cdot x_2=-m\end{matrix}\right.\)

Ta có: \(y_1+y_2=x_1+\dfrac{1}{x_2}+x_2+\dfrac{1}{x_1}\)

\(=\left(x_1+x_2\right)+\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)\)

\(=\left(2m-2\right)+\dfrac{2m-2}{-m}\)

\(=2m-2-\dfrac{2m-2}{m}\)

\(=\dfrac{2m^2-2m-2m+2}{m}\)

\(=\dfrac{2m^2-4m+2}{m}\)

\(=\dfrac{2\left(m^2-2m+1\right)}{m}\)

\(=\dfrac{2\left(m-1\right)^2}{m}\)

Ta có: \(y_1y_2=\left(x_1+\dfrac{1}{x_2}\right)\left(x_2+\dfrac{1}{x_1}\right)\)

\(=x_1x_2+2+\dfrac{1}{x_1x_2}\)

\(=-m+2+\dfrac{1}{-m}\)

\(=-m+2-\dfrac{1}{m}\)

\(=\dfrac{-m^2}{m}+\dfrac{2m}{m}-\dfrac{1}{m}\)

\(=\dfrac{-m^2+2m-1}{m}\)

\(=\dfrac{-\left(m-1\right)^2}{m}\)

Phương trình đó sẽ là:

\(x^2-\dfrac{2\left(m-1\right)^2}{m}x-\dfrac{\left(m-1\right)^2}{m}=0\)

Draco
Xem chi tiết
gấu béo
6 tháng 5 2022 lúc 21:47

Cho phương trình x2 + 2 ( m + 3 )x + 2m - 11

a) Ta có:

△' = b'- ac = ( m + 3 )2 - 1 . ( 2m - 11 ) 

m2 - 6m + 9 - 2m + 11

△' = b'- ac = 

Beerus - Slutte
Xem chi tiết
Thiên Thương Lãnh Chu
7 tháng 5 2021 lúc 5:50

a) Đây là phương trình bậc 2 ẩn x có 

Δ = (-m)2 - 4(m-1)

   = m2-4m+4  = (m-2)2

Do (m-2)2≥0 ∀m => Δ≥0 ∀m

Vậy phương trình luôn có nghiệm với mọi m.

b) Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m\left(1\right)\\x_1x_2=m-1\left(2\right)\end{matrix}\right.\)

\(x_1=2x_2\left(3\right)\)

Từ (1)(3) ta có hệ phương trình: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1=2x_2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}3x_2=m\\x_1=2x_2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x_2=\dfrac{m}{3}\\x_1=\dfrac{2m}{3}\end{matrix}\right.\)

Thay \(x_1=\dfrac{2m}{3};x_2=\dfrac{m}{3}\) vào (2) ta có:

\(\dfrac{2m}{3}.\dfrac{m}{3}=m-1\)

<=> 2m2 = 9(m - 1)

<=> 2m2 - 9m + 9 = 0

<=> (m - 3)(2m - 3) = 0

<=> \(\left[{}\begin{matrix}m-3=0\\2m-3=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}m=3\\m=\dfrac{3}{2}\end{matrix}\right.\)

Vậy tại m ∈\(\left\{3;\dfrac{3}{2}\right\}\) thì hai nghiệm của phương trình thoả mãn x1=2x2

 

Kiều Vũ Linh
7 tháng 5 2021 lúc 9:32

a) Ta có:

\(\Delta=b^2-4ac=\left(-m\right)^2-4.1.\left(m-1\right)\)

\(=m^2-4m+4=\left(m-2\right)^2\ge0\) với mọi m

Vậy phương trình đã cho luôn có nghiệm với mọi m

b) Do phương trình luôn có nghiệm với mọi m

Theo định lý Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-m\right)}{1}=m\left(1\right)\\x_1x_2=\dfrac{c}{a}=\dfrac{m-1}{1}=m-1\left(2\right)\end{matrix}\right.\)

\(x_1=2x_2\), thay vào (1) ta có:

\(2x_2+x_2=3\Leftrightarrow3x_2=m\Leftrightarrow x_2=\dfrac{m}{3}\)

\(\Rightarrow x_1=2x_2=\dfrac{2m}{3}\)

Thay \(x_1=\dfrac{2m}{3};x_2=\dfrac{m}{3}\) vào (2) ta có:

\(\dfrac{2m}{3}.\dfrac{m}{3}=m-1\)

\(\Leftrightarrow2m^2=9m-9\)

\(\Leftrightarrow2m^2-9m+9=0\)    (*)

\(\Delta_m=\left(-9\right)^2-4.2.9=9\)

Phương trình (*) có 2 nghiệm:

\(m_1=\dfrac{-\left(-9\right)+\sqrt{9}}{2.2}=3\)

\(m_2=\dfrac{-\left(-9\right)-\sqrt{9}}{2.2}=\dfrac{3}{2}\)

Vậy \(m=3;m=\dfrac{3}{2}\) thì phương trình đã cho có hai nghiệm \(x_1;x_2\) thỏa mãn \(x_1=2x_2\)

Duck Nguyen
Xem chi tiết
Xuân Mai
Xem chi tiết
Lê Ng Hải Anh
20 tháng 5 2021 lúc 8:58

1) \(9x^4+8x^2-1=0\)

\(\Leftrightarrow9x^4+9x^2-x^2-1=0\)

\(\Leftrightarrow9x^2\left(x^2+1\right)-\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(9x^2-1\right)=0\)

\(\Rightarrow9x^2-1=0\)

\(\Leftrightarrow x=\dfrac{\pm1}{3}\)

Vậy...

2)  \(\Delta=\left(m-1\right)^2-4\left(-m^2+m-1\right)\) \(=5m^2-6m+5\)

Có: \(5m^2-6m+5=5\left(m^2-\dfrac{6}{5}m+\dfrac{9}{25}\right)+\dfrac{16}{5}\)

\(=5\left(m-\dfrac{3}{5}\right)^2+\dfrac{16}{5}\ge\dfrac{16}{5}>0\forall m\in R\)

\(\Rightarrow\Delta>0\forall m\in R\)

Vậy: PT luôn có 2 nghiệm phân biệt với mọi m.

 

 

Phan Nhật Đức
Xem chi tiết
Phương Đỗ
Xem chi tiết
Hoàng Thị Lan Hương
4 tháng 8 2017 lúc 9:22

1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)

Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)

a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)

Vậy \(m>\frac{1+\sqrt{13}}{2}\)

2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)

Ta thấy \(\Delta=4m^2+1>0\forall m\)

Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m

b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)

Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)

\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)

\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)

Vậy \(m=0\)thoă mãn yêu cầu bài toán