Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Phan Anh Thư
Xem chi tiết
Mạnh Lê
23 tháng 5 2018 lúc 10:57

Với mọi n nguyên dương ta có:

\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=1\Rightarrow\frac{1}{\sqrt{n+1}+\sqrt{n}}=\sqrt{n+1}-\sqrt{n}\)

Với k nguyên dương thì 

\(\frac{1}{\sqrt{k-1}+\sqrt{k}}>\frac{1}{\sqrt{k+1}+\sqrt{k}}\Rightarrow\frac{2}{\sqrt{k-1}+\sqrt{k}}>\frac{1}{\sqrt{k-1}+\sqrt{k}}+\frac{1}{\sqrt{k+1}+\sqrt{k}}=\sqrt{k}-\sqrt{k-1}+\sqrt{k+1}-\sqrt{k}\)

\(=\sqrt{k+1}-\sqrt{k-1}\)(*)

Đặt A = vế trái. Áp dụng (*) ta có:

\(\frac{2}{\sqrt{1}+\sqrt{2}}>\sqrt{3}-\sqrt{1}\)

\(\frac{2}{\sqrt{3}+\sqrt{4}}>\sqrt{5}-\sqrt{3}\)

...

\(\frac{2}{\sqrt{79}+\sqrt{80}}>\sqrt{81}-\sqrt{79}\)

Cộng tất cả lại

\(2A=\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{3}+\sqrt{4}}+....+\frac{2}{\sqrt{79}+\sqrt{80}}>\sqrt{81}-1=8\Rightarrow A>4\left(đpcm\right)\)

3. 

Theo bất đẳng thức cô si ta có: 

\(\sqrt{b-1}=\sqrt{1.\left(b-1\right)}\le\frac{1+b-1}{2}=\frac{b}{2}\Rightarrow a.\sqrt{b-1}\le\frac{a.b}{2}\)

Tương tự \(\Rightarrow b.\sqrt{a-1}\le\frac{a.b}{2}\Rightarrow a.\sqrt{b-1}+b.\sqrt{a-1}\le a.b\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=2\)

Trần Lâm Thiên Hương
Xem chi tiết
Pain Thiên Đạo
25 tháng 5 2018 lúc 21:43

\(x^4y+x^2y-x^2y=x^2y\left(x^2+1\right)-x^2y.\)

\(\hept{\begin{cases}\frac{x^2y\left(x^2+1\right)-x^2y}{\left(x^2+1\right)}=x^2y-\frac{x^2y}{\left(x^2+1\right)}\\\frac{y^2z\left(y^2+1\right)-y^2z}{\left(y^2+1\right)}=y^2z-\frac{y^2z}{\left(y^2+1\right)}\\\frac{z^2x\left(z^2+1\right)-z^2x}{\left(z^2+1\right)}=z^2x-\frac{z^2x}{\left(z^2+1\right)}\end{cases}}Vt\ge x^2y+y^2z+z^2x-\left(\frac{x^2y}{x^2+1}+\frac{y^2z}{y^2+1}+\frac{z^2x}{z^2+1}\right)\)

\(\hept{\begin{cases}x^2+1\ge2x\\y^2+1\ge2y\\z^2+1\ge2z\end{cases}\Leftrightarrow\hept{\begin{cases}-\frac{x^2y}{x^2+1}\ge\frac{x^2y}{2x}=\frac{xy}{2}\\\frac{y^2z}{2y}=\frac{yz}{2}\\\frac{z^2x}{2z}=\frac{xz}{2}\end{cases}\Leftrightarrow}VT\ge x^2y+y^2z+z^2x-\left(\frac{xy+yz+zx}{2}\right)}\)

\(x^2y+y^2z+z^2x\ge3\sqrt[3]{x^3y^3z^3}=3\)

\(VT\ge3-\frac{\left(xy+yz+zx\right)}{2}\)

t chỉ làm dc đến đây thôi :))

Trần Lâm Thiên Hương
27 tháng 5 2018 lúc 11:02

Từ \(VT\ge x^2y+y^2z+z^2x-\left(\frac{xy+yz+zx}{2}\right)\)ta có:

\(x^2y+x^2y+y^2z=x^2y+x^2y+\frac{y}{x}\ge3xy\)(áp dụng BĐT Cauchy)

Tương tự : \(y^2z+y^2z+z^2x\ge3yz\);   \(z^2x+z^2x+x^2y\ge3zx\)

Cộng vế theo vế suy ra : \(3\left(x^2y+y^2z+z^2x\right)\ge3\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2y+y^2z+z^2x\ge xy+yz+zx\)

\(\Leftrightarrow VT\ge\frac{xy+yz+zx}{2}\ge\frac{3\sqrt[3]{x^2y^2z^2}}{2}=\frac{3}{2}\)

Dấu '=' xảy ra khi x = y = z = 1

Tran Le Khanh Linh
21 tháng 4 2020 lúc 19:43

Do xyz=1. nên bđt cần chứng minh tường đương với

\(\frac{x^4}{x^3z+xz}+\frac{y^4}{y^3x+xy}+\frac{z^4}{z^3y+zy}\ge\frac{3}{2}\)

Theo BĐT Bunhiacopsky ta có:

\(\frac{x^4}{x^3z+xz}+\frac{y^4}{y^3x+xy}+\frac{z^4}{z^3y+zy}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^3z+xz+y^3x+xy+z^3y+zy}\)

Do vậy ta cần cm

\(\frac{\left(x^2+y^2+z^2\right)^2}{x^3z+xz+y^3x+xy+z^3y+zy}\ge\frac{3}{2}\)

\(\Leftrightarrow2\left(x^4+y^4+z^4\right)+4\left(x^2y^2+y^2z^2+z^2x^2\right)\ge3\left(x^3z+y^3x+z^3y\right)+3\left(xy+yz+xz\right)\)

BĐT trên là tổng của 3 BĐT sau:

\(1,x^2y^2+y^2z^2+z^2x^2\ge xy+yz+xz\)

\(2,x^4+y^4+z^4\ge x^3z+y^3x+z^3y\)

\(3,x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2\ge2\left(x^3z+y^3x+z^3y\right)\)

ta có bđt trên tương đương với

\(x^2\left(x-z\right)^2+y^2\left(y-x\right)^2+z^2\left(z-y\right)^2\ge0\)

Nhân 3 ở bđt đầu tiên rồi cộng vế theo vế các bđt ở dưới ta có đpcm

dấu "=" xảy ra khi x=y=z=1

Khách vãng lai đã xóa
Sonyeondan Bangtan
Xem chi tiết
Hạ Tử Thiên
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
17 tháng 6 2020 lúc 20:11

\(P\left(x\right)=4x^3-\frac{3}{2}x^2-x+10\)

\(P\left(-2\right)=4\cdot\left(-2\right)^3-\frac{3}{2}\cdot\left(-2\right)^2-\left(-2\right)+10\)

\(=4\cdot\left(-8\right)-6+2+10\)

\(=-26\)

* H(x) + Q(x) = P(x)

<=> H(x) = P(x) - Q(x)

H(x) = \(4x^3-\frac{3}{2}x^2-x+10-\left(10-\frac{1}{2}x-2x^2+4x^3\right)\)

        = \(4x^3-\frac{3}{2}x^2-x+10-10+\frac{1}{2}x+2x^2-4x^3\)

        = \(\frac{1}{2}x^2-\frac{1}{2}x\)

* H(x) luôn nguyên với mọi x 

Chỗ này bạn xem lại đề 

Khách vãng lai đã xóa
๖²⁴ʱ๖ۣۜTɦủү❄吻༉
17 tháng 6 2020 lúc 20:12

a, Ta có : \(P\left(-2\right)=4\left(-2\right)^3-\frac{3}{2}\left(-2\right)^2-\left(-2\right)+10\)

\(=-32.\left(-6\right)+2+10=192+2+10=204\)

b, \(H\left(x\right)+Q\left(x\right)=P\left(x\right)\)

\(H\left(x\right)=P\left(x\right)-Q\left(x\right)\)

\(H\left(x\right)=4x^3-\frac{3}{2}x^2-x+10-10+\frac{1}{2}x+2x^2-4x^3\)

\(=\frac{1}{2}x^2-\frac{1}{2}x\)

Khách vãng lai đã xóa
Phan Nghĩa
17 tháng 6 2020 lúc 20:14

a, Với \(x=-2\)suy ra :

\(P\left(x\right)=4\left(-2\right)^3-\frac{3}{2}\left(-2\right)^2-\left(-2\right)+10\)

\(=4.8-\frac{3}{2}.4+12=32-6+12\)

\(=32+6=38\)

Vậy với \(x=-2\)thì \(P\left(x\right)=38\)

b, Ta có : \(H\left(x\right)+Q\left(x\right)=P\left(x\right)\)

\(< =>H\left(x\right)=P\left(x\right)-Q\left(x\right)\)

\(< =>H\left(x\right)=\left(4x^3-\frac{3}{2}x^2-x+10\right)-\left(10-\frac{1}{2}x-2x^2+4x^3\right)\)

\(< =>H\left(x\right)=\left(4x^3-4x^3\right)+\left(-\frac{3}{2}x^2+2x^2\right)+\left(-x+\frac{1}{2}x\right)+\left(10-10\right)\)

\(< =>H\left(x\right)=\frac{1}{2}x^2-\frac{1}{2}x=\left(\frac{1}{2}x\right)\left(x-1\right)\)

Khách vãng lai đã xóa
Joy Jung
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 5 2020 lúc 16:57

a) Để \(\frac{15}{4x^2-12x+19}\le\frac{3}{2}\) thì \(15\cdot2\le3\cdot\left(4x^2-12x+19\right)\)

\(\Leftrightarrow30\le12x^2-36x+57\)

\(\Leftrightarrow30-12x^2+36x-57\le0\)

\(\Leftrightarrow-12x^2+36x-27\le0\)

\(\Leftrightarrow-12\left(x^2-3x+\frac{9}{4}\right)\le0\)

\(\Leftrightarrow-12\left(x-\frac{3}{2}\right)^2\le0\)(luôn đúng)

b) Để \(\frac{4x+3}{x^2+1}\le4\)

thì \(4x+3\le4\left(x^2+1\right)\)

\(\Leftrightarrow4x+3\le4x^2+4\)

\(\Leftrightarrow4x+3-4x^2-4\le0\)

\(\Leftrightarrow-4x^2+4x-1\le0\)

\(\Leftrightarrow-\left(4x^2-4x+1\right)\le0\)

\(\Leftrightarrow-\left(2x-1\right)^2\le0\)(luôn đúng)

๖ACE✪Şнαdσωッ
Xem chi tiết
𝑳â𝒎 𝑵𝒉𝒊
2 tháng 3 2020 lúc 12:10

Bình thường A xđ \(\Leftrightarrow\left(x^2+1\right)\left(x^2+4x+5\right)\ne0\)

Ta có \(x^2+4x+5=\left(x+2\right)^2+1\)

Mà \(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow x^2+4x+5>1\)(1)

Lại có \(x^2\ge0\forall x\)

\(\Rightarrow x^2+1>0\)(2)

(1)(2) \(\Rightarrow\left(x^2+1\right)\left(x^2+4x+5\right)>0\)hay \(\left(x^2+1\right)\left(x^2+4x+5\right)\ne0\)

Khách vãng lai đã xóa
Níu Đắng Cay
Xem chi tiết
Trần Đức Thắng
29 tháng 6 2015 lúc 8:19

Mình làm cho một cái cái kia tương tự 

  Biến đổi vê phải ta có

a, nhầm đề phải là ( x - 3)^2 + 1

 

(x - 3)^2 +  1 = x^2 - 6x + 9 + 1 = x^2 - 6x + 10 = VT => ĐPCM

           

Diệu Anh Bùi
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 2 2020 lúc 21:57

\(x^2+3+\frac{1}{x^2+3}=\frac{x^2+3}{9}+\frac{1}{x^2+3}+\frac{8\left(x^2+3\right)}{9}\ge2\sqrt{\frac{x^2+3}{9\left(x^2+3\right)}}+\frac{8.\left(0+3\right)}{9}=\frac{10}{3}\)

Dấu "=" xảy ra khi \(x=0\)

Khách vãng lai đã xóa
Hiển Phạm Gia
Xem chi tiết
pham trung thanh
12 tháng 12 2017 lúc 17:01

Áp dụng BĐT Cauchy, ta có:

 \(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{y^2}}=\frac{2}{xy}\)

\(\Rightarrow VT\ge\frac{2}{xy}+\frac{1}{x^2+y^2}\)

\(\Leftrightarrow VT\ge\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)+\frac{3}{2xy}\)

\(\Rightarrow VT\ge\frac{4}{\left(x+y\right)^2}+\frac{3}{\frac{\left(x+y\right)^2}{2}}\)

\(\Leftrightarrow VT\ge\frac{4}{\left(x+y\right)^2}+\frac{6}{\left(x+y\right)^2}=\frac{10}{\left(x+y\right)^2}\)

Dấu = xảy ra khi \(x=y>0\)

Vậy \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{x^2+y^2}\ge\frac{10}{\left(x+y\right)^2}\) với \(\forall x;y>0\)