Tìm số tự nhiên n sao cho:
S(n)=n^2 - 2018n +11
Tìm số tự nhiên n sao cho:
n^2 + 2018n + 2017 là hợp số
Tìm số tự nhiên n sao cho:
n^2 + 2018n + 2017 là số nguyên tố
a)Cho n là một số tự nhiên. Khi chia A = n2+2018n + 3 cho 4 thì số dư có thể nhận những giá trị nào?
b)Tìm số tự nhiên n để A là một số chính phương.
Ta có \(n^3+2018n=n\left(n-1\right)\left(n+1\right)+2019n⋮3\).
Lại có \(2020^{2019}+4\equiv1^{2019}+4\equiv2\left(mod3\right)\).
Từ đó suy ra không tồn tại n thoả mãn đề bài.
Tìm số tự nhiên n sao cho: \(n^3+2018n=2020^{2019}+4\)
\(2020\equiv1\left(mod3\right)\Rightarrow2020^{2019}\equiv1\left(mod3\right)\)
\(\Rightarrow2020^{2019}+4\equiv2\left(mod\right)3\Rightarrow VP⋮̸3\)
Xét \(VT=n\left(n^2+2018\right)\)
- Nếu \(n⋮3\Rightarrow VT⋮3\Rightarrow\) ptvn
- Nếu \(n\) chia 3 dư 1 hoặc dư 2 \(\Rightarrow n^2\) chia 3 dư 1
Mà \(2018\) chia 3 dư 2 \(\Rightarrow n^2+2018⋮3\Rightarrow VT⋮3\) \(\Rightarrow\) ptvn
Vậy ko tồn tại số tự nhiên n thỏa mãn yêu cầu
TÌM TẤT CẢ CÁC SỐ TỰ NHIÊN N SAO CHO 10n+11 CHIA HẾT CHO n+2
Nhanh lên nha mọi người mình đang cần gấp
Bài 1: tìm số tự nhiên n sao cho n-1; n+1;n+5;n+7;n+11;n+13 đồng thời là số nguyên tố
Bài 2: tìm cấc số nguyên tố p sao cho p^3+p^2+11p+2 là số nguyên tố
a/ Tìm số tự nhiên n > 1 sao cho:
n + 8 chia hết cho n + 2
b/ Tìm số tự nhiên n để hai số sau nguyên tố cùng nhau:
9n + 11 và 12n + 15
a: \(\Leftrightarrow n+2=6\)
hay n=4
a) \(\left(n+2\right)+6⋮\left(n+2\right)\Rightarrow\left(n+2\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in\) N*, n>1 \(\Rightarrow n\in\left\{4\right\}\)
b) Gọi d là \(UCLN\left(9n+11;12n+15\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\left(9n+11\right)⋮d\\\left(12n+15\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(36n+44\right)⋮d\\\left(36n+45\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(36n+45\right)-\left(36n+44\right)⋮d\Rightarrow1⋮d\Rightarrowđpcm\)
Vậy 2 số trên luôn là 2 số nguyên tố cùng nhau
Bài 10. Tìm số tự nhiên n nhỏ nhất sao cho khi chia n cho 5,7,11 thì được các số dư tương ứng
là 3,4,6.
Bài 11. Tìm số tự nhiên n lớn nhất có ba chữ số sao cho khi chia n cho 5,8,7 được các số dư
tương ứng là 2,3,5.
Bài 12. Tìm số tự nhiên n>0 nhỏ nhất sao cho n có thể viết thành tổng của ba số tự nhiên liên
tiếp và tổng của 7 số tự nhiên liên tiếp lớn hơn 0.
Bài 13. Tìm số tự nhiên n nhỏ nhất sao cho n có thể viết thành tổng của 4 số tự nhiên liên tiếp,
5 số tự nhiên liên tiếp và 6 số tự nhiên liên tiếp lớn hơn 0.