cho pt x^2 -2x+m-1=0
1;tìm m để pt có 1 nghiệm là 2
2; tìm m để pt có 2 nghiệm phân biệt x1;x2
cho pt x\(^2\)-2(m+2)x+m+1=0.Tìm m để pt có nghiệm x\(_1\),x\(_2\) thỏa mãn x\(_1\)(1-2x\(_2\))+x\(_2\)(1-2x\(_1\))=m\(^2\) (mong mọi người giúp)
Để pt có 2 nghiệm x1;x2
\(\Delta'=\left(m+2\right)^2-\left(m+1\right)=m^2+4m+4-m-1=m^2+3m+3\ge0\)
Ta có : \(\left(x_1+x_2\right)\left[1-2\left(x_1+x_2\right)+1\right]=m^2\)
\(\Leftrightarrow2\left(m+2\right)\left[2-2.2\left(m+2\right)\right]=m^2\)
\(\Leftrightarrow m^2=2\left(m+2\right)\left(-6-4m\right)\Leftrightarrow m^2=-4\left(m+2\right)\left(3+2m\right)\)
\(\Leftrightarrow m^2=-4\left(2m^2+7m+6\right)\Leftrightarrow m^2+8m^2+28m+24=0\)
\(\Leftrightarrow9m^2+28m+24=0\)
\(\Delta'=196-24.9=196-216< 0\)
Vậy ko có gtri m tm
Cho pt x2 - 2x + \(2\sqrt{2x-x^2}\)=m
a) giải pt khi m =1
b) Tìm m để pt có nghiệm
undefined cho pt :(m-1)x^2+2x+1=0 -
giải pt với m =-1 -tìm m để pt có 2 nghiệm phân biệt x1=2x2
b1 : cho hệ pt (m-1)x - my = 3m-1
2x-y =m+5
a) giải hệ pt khi m = 2
b) tìm m để hệ pt có nghiệm duy nhất sao cho \(x^2 -y^2=4 \)
b2 : cho hệ pt mx + y = 1
x + my = m + 1
với gtrị nào của m thì hệ pt có nghiệm duy nhất
với gtrị nào của m thì hệ pt có vô số nghiệm
với gtrị nào của m thì hệ pt vô nghiệm
Thay m=2 vào HPT ta có:
\(\left\{{}\begin{matrix}\left(2-1\right)x-2y=6-1\\2x-y=2+5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x-4y=10\\-3y=3\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
Vậy HPT có nghiemj (x;y) = (3;-11)
cho pt ẩn x sau:(2x+m)(x-1)-2x^2+mx+m-2=0
tìm các giá trị của m để pt có nghiệm là 1 số âm
help chiều nay thi toán rồi
\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)
\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)
\(\Leftrightarrow\left(2m-2\right)x-2=0\)
\(\Leftrightarrow\left(2m-2\right)x=2\)
\(\Leftrightarrow x=\dfrac{2}{2m-2}\)
Để phương trình đã cho có nghiệm âm thì:
\(\dfrac{2}{2m-2}< 0\)
\(\Leftrightarrow2m-2< 0\)
\(\Leftrightarrow2m< 2\)
\(\Leftrightarrow m< 1\)
Vậy \(m< 1\) thì phương trình đã cho có nghiệm âm.
\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)
\(\Leftrightarrow2x^2+mx-2x-m-2x^2+mx+m-2=0\)
\(\Leftrightarrow\left(2m-2\right)x-2=0\left(1\right)\)
+) Nếu \(m=1\)\(\rightarrow\left(1\right)\Leftrightarrow0x-2=0\left(V_{n_o}\right)\)
+) Nếu \(m\ne1\rightarrow x=\dfrac{2}{2m-2}\)
Để \(x< 0\Leftrightarrow\dfrac{2}{2m-2}< 0\) mà \(2>0\Leftrightarrow2m-2< 0\Leftrightarrow m< 1\)
Cho pt : x^2 -2x - m = 0 m ? Để pt có 2 nghiệm x1 , x2 t/ mãn ( x1 , x2 + 1)^2 = 2 ( x^1+ x^2)
\(x^2-2x-m=0\)
Theo Vi-ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{- \left(-2\right)}{1}=2\\x_1x_2=\dfrac{c}{a}=-m\end{matrix}\right.\)
Ta có :
\(\left(x_1x_2+1\right)^2=2\left(x_1+x_2\right)\) ( Cái chỗ x^1 , x^2 bn ghi nhầm thành mũ à)
\(\Leftrightarrow\left(-m+1\right)^2-2.2=0\)
\(\Leftrightarrow m^2-2m+1-4=0\)
\(\Leftrightarrow m^2-2m-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\)
Vậy \(m=3;m=-1\) thì thỏa mãn
1) Cho pt x^2 - 2x + m = 0 (với m là số thực thỏa mãn m<1)
Chứng minh phương trình đã cho 2 nghiệm phần biệt
2) Cho x1 và x2 là hai nghiệm của pt x^2 +2x -1 =0
Tính giá trị biểu thức P= 1/x1 + 1/x2
2:
\(P=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{-2}{-1}=2\)
1: Δ=(-2)^2-4*m
=4-4m
m<1
=>-4m>-4
=>-4m+4>0
=>Phương trình luôn có hai nghiệm phân biệt khi m<1
Cho pt bậc hai với m là tham số:
x2-2x+m=0
Tìm m để pt có nghiệm
Tìm m để pt có 2 nghiệm x1,x2 thoả mãn x1- 2x2=5
đầu tiên bn tính đenta
cho đenta lớn hơn hoặc = 0 thì pt có nghiệm
b, từ x1-2x2=5
=> x1=5+2x2
chứng minh đenta lớn hơn 0
theo hệ thức viet tính đc x1+x2=..
x1*x2=....
thay vào cái 1 rồi vào 2 là đc
Cho PT (2x+m)(x-1)-2x^2+mx+m-2=0. Tìm m để PT có nghiệm là số không âm
(2x+m)(x-1)-2x^2+mx+m-2=0
<=> 2x^2+(m-2)x-m -2x^2+mx+m-2=0
<=> (2m-2)x-2=0
<=> (2m-2)x=2
<=> x=2/(2m-2)
Để pt có nghiệm o âm <=> 2/(2m-2)>0 <=> 2m-2 >0 <=> m>1
Vậy PT có nghiệm o âm <=> m>1
cho pt x^4 - 2x^3 - mx^2 + 2x +1 = 0. tìm m để pt có 4 nghiệm