Chứng minh rằng: \(\left(3^n+3^{n+3}+3^{n+1}+2^{n+2}\right)⋮6\)
Chứng minh rằng với \(n\in N\)* thì:
a, \(1^2+2^2+3^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
b, \(1^3+2^3+3^3+...+n^3=\left(\frac{n\left(n+1\right)}{2}\right)^2\)
c, \(n+2\left(n-1\right)+3\left(n-2\right)+...+n=\frac{n\left(n+1\right)\left(n+2\right)}{6}\)
Chứng minh rằng \(\forall\) STN n ta có:
a) \(\left(7^n+1\right).\left(7^n+2\right)⋮3\)
b) \(n^2+n+6⋮̸4\)
câu b là n^2 + n + 6 không chia hết cho 4
Chứng minh rằng: \(Q=n^3+\left(n+1\right)^3+\left(n+2\right)^3⋮9\) với mọi \(n\inℕ^∗\)
\(Q=n^3+\left(n+1\right)^3+\left(n+2\right)^3⋮9\)
\(Q=n^3+n^3+3n^2+3n+1+n^3+6n^2+12n+8\)
\(Q=3n^3+9n^2+15n+9\)
\(Q=3n\left(n^2+5\right)+9\left(n^2+1\right)\)
mà \(\left\{{}\begin{matrix}9\left(n^2+1\right)⋮9\\3n⋮3\\n^2+5⋮3\end{matrix}\right.\left(\forall n\inℕ^∗\right)\)
\(\Rightarrow Q=3n\left(n^2+5\right)+9\left(n^2+1\right)⋮9,\forall n\inℕ^∗\)
\(\Rightarrow dpcm\)
Chứng minh rằng với mọi số tự nhiên n, \(\left(2^{3^{^n}}+1\right)⋮\left(3^{n+1}\right)\)nhưng không chia hết cho \(3^{n+2}\)
Do 2 + 1 chia hết cho 3 nên theo bổ đề LTE ta có \(v_3\left(2^{3^n}+1\right)=v_3\left(2+1\right)+v_3\left(3^n\right)=n+1\).
Do đó \(2^{3^n}+1⋮3^{n+1}\) nhưng không chia hết cho \(3^{n+2}\).
Chứng minh rằng:
1.2 + 2.3 + 3.4 +....+ n.(n+1) = \(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)
1.3 + 3.5 + 5.7 +.....+ n.(n+2)=\(\frac{3+n.\left(n+2\right).\left(n+4\right)}{6}\)
Giúp mk vs
Đặt \(A=1.2+2.3+3.4+...+n\left(n+1\right)\)
\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+...+3n\left(n+1\right)\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n\left(n+1\right)\left(n+2-n+1\right)\)
\(=1.2.3+2.3.4-1.2.3+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow1.2+2.3+3.4+...+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Bạn ơi tại sao 3n.(n+1) lại bằng với n.(n+1).(n+2-n+1)
chứng minh \(1^2+2^2+...+n^2=\dfrac{1}{3}n\left(n+\dfrac{1}{2}\right)\left(n+1\right)=\dfrac{1}{3}n^3+\dfrac{1}{2}n^2+\dfrac{1}{6}n\)
\(1^2+2^2+...+n^2=1+2\left(1+1\right)+...+n\left(n-1+1\right)=1+2+1.2+3+2.3+...+n+\left(n-1\right)n\)
\(=\left(1+2+3+...+n\right)+\left[1.2+2.3+...+\left(n-1\right)n\right]=\dfrac{\left(n+1\right)\left(\dfrac{n-1}{1}+1\right)}{2}+\dfrac{1.2.3+2.3.3+...+\left(n-1\right)n.3}{3}=\dfrac{n\left(n+1\right)}{2}+\dfrac{1.2.3+2.3.\left(4-1\right)+...+\left(n-1\right)n\left[\left(n+1\right)-\left(n-2\right)\right]}{3}\)
\(=\dfrac{n\left(n+1\right)}{2}+\dfrac{1.2.3-1.2.3+2.3.4-...-\left(n-2\right)\left(n-1\right)n+\left(n-1\right)n\left(n+1\right)}{3}\)
\(=\dfrac{n\left(n+1\right)}{2}+\dfrac{\left(n-1\right)n\left(n+1\right)}{3}=\dfrac{3n\left(n+1\right)+2\left(n-1\right)n\left(n+1\right)}{6}=\dfrac{2n^3+3n^2+n}{6}=\dfrac{1}{3}n^3+\dfrac{1}{2}n^2+\dfrac{1}{6}n=\dfrac{1}{3}n\left(n^2+\dfrac{3}{2}n+\dfrac{1}{2}\right)=\dfrac{1}{3}n\left(n+\dfrac{1}{2}\right)\left(n+1\right)\)
Chứng minh rằng: \(A=\left(2^n-1\right)\left(2^n+1\right)⋮3\forall n\in N\)
\(\Rightarrow A=2^{2n}-1=4^n-1=\left(4-1\right)\left(4^{n-1}+4^{n-2}+...+4+1\right)=3\cdot\left(4^{n-1}+4^{n-2}+...+4+1\right)⋮3\forall n\in N\)
1. Chứng minh: \(\left(2^1+2^2+2^3+2^4+...+2^{59}+2^{60}\right):3\)
2. Chứng minh: \(M=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}⋮6\)
1.A = 21 + 22 + 23 + 24 + ... + 259 + 260
Xét .dãy số: 1; 2; 3; 4; .... 59; 60 Dãy số này có 60 số hạng vậy A có 60 hạng tử.
vì 60 : 2 = 30 nên nhóm hai số hạng liên tiếp của A vào một nhóm thì ta được:
A = (21 + 22) + (23 + 24) +...+ (259 + 260)
A = 2.(1 + 2) + 23.(1 +2) +...+ 259.(1 +2)
A =2.3 + 23.3 + ... + 259.3
A =3.( 2 + 23+...+ 259)
Vì 3 ⋮ 3 nên A = 3.(2 + 23 + ... + 259)⋮3 (đpcm)
2, M = 3n+3 + 3n+1 + 2n+3 + 2n+2 ⋮ 6
M = 3n+1.(32 + 1) + 2n+2.(2 + 1)
M = 3n.3.(9 + 1) + 2n+1.2 . 3
M = 3n.30 + 2n+1.6
M = 6.(3n.5 + 2n+1)
Vì 6 ⋮ 6 nên M = 6.(3n.5+ 2n+1) ⋮ 6 (đpcm)
Chứng minh rằng :
\(\sqrt[3]{\left(n+1\right)^2}-\sqrt[3]{n^2}< \frac{2}{3.\sqrt[3]{n}}< \sqrt[3]{n^2}-\sqrt[3]{\left(n-1\right)^2}\)
Chứng minh
\(\sqrt[3]{\left(n+1\right)^2}-\sqrt[3]{n^2}< \frac{2}{3\sqrt[3]{n}}\)
\(\Leftrightarrow3\sqrt[3]{n\left(n+1\right)^2}< 2+3n\)
Lập phương 2 vế rồi rút gọn được
\(\Leftrightarrow9n+8>0\)
Đúng với mọi n dương. Ta có ĐPCM.
Cái còn lại tương tự