cho x,y \(\in\) N* x > 2; y > 2 chứng tỏ rằng x + y < x * y
Cho \(x\in N\)* , \(y\in N\)* ,x > 2 , y > 2. Chứng tỏ rằng x + y < xy.
\(xy=\dfrac{xy}{2}+\dfrac{xy}{2}>\dfrac{2y}{2}+\dfrac{2x}{2}=x+y\)
Tìm \(x,y\in N\)* sao cho \(x^2y^2\left(y-x\right)=5xy^2-27\)
Cho x, y \(\in N\)sao cho
x+1 và y+2013 chia hết cho 6
CMR : 4x +x + y chia hết cho 6
2 , CMR \(2^{2^{2n}}\)+5 chia hết cho 7 với mọi n \(\in\)N
1, Tìm x, y \(\in N\)
2x + 3 = y2
2, Cho x, y \(\in N\)* thỏa mãn x2 + y2 \(⋮\) x . y
Tính B = \(\dfrac{x^2+y^2}{2xy}\)
Cho x,y \(\in\)R sao cho x+y , x2+y2, x4+y4 nguyên . Cmr: x3+y3 nguyên.
Cho \(x;y;z\in N\)* thỏa mãn \(\left(x+yz\right)\left(y+xz\right)=13^n\) . Chứng minh n chia hết cho 2
Tìm x;y \(\in\) N*sao cho
a, x/10-1/y=3/10
b, 1/x+y/2=5/8
2 Tìm x;y \(\in\) N* sao cho
a,1/x+1/y=1
b,1/x+1/y+1/z=1
c, 1/x=1/y=1/2
\(1,a,\frac{x}{10}-\frac{1}{y}=\frac{3}{10}=>\frac{x}{10}-\frac{3}{10}=\frac{1}{y}=>\frac{x-3}{10}=\frac{1}{y}=>\left(x-3\right).y=1.10=10\)
bn liệt kê bảng các ước của 10 ra là đc (chỉ lấy ước tự nhiên)
câu sau tương tự
\(2,\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Do vai trò của x,y,z như nhau nên giả sử \(1\le x\le y\le z\)
\(=>\frac{1}{x}\ge\frac{1}{y}\ge\frac{1}{z}=>\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{3}{x}=>1\le\frac{3}{x}=>x\le3=>x\in\left\{1;2;3\right\}\)
\(\left(+\right)x=1=>\frac{1}{y}+\frac{1}{z}=0\) (vô lí)
\(\left(+\right)x=2=>\frac{1}{y}+\frac{1}{z}=\frac{1}{2}=>\frac{y+z}{yx}=\frac{1}{2}=>2\left(y+z\right)=yz=>2y+2z=yz\)
\(=>2y+2z-yz=0=>2y-yz+2z=0=>y\left(2-z\right)+2z-4=-4\)
\(=>y\left(2-z\right)-4+2x=-4=>y\left(2-z\right)-2\left(2-z\right)=-4=>\left(y-2\right)\left(2-z\right)=-4\)
Tìm đc (y;z)=(4;4);(3;6)
\(\left(+\right)x=3=>\frac{1}{y}+\frac{1}{z}=\frac{2}{3}\)
Nếu \(y=3=>z=3\)
Nếu \(y\ge4=>\frac{1}{y}+\frac{1}{z}\le\frac{1}{4}+\frac{1}{4}=\frac{1}{2}< \frac{1}{3}\)
Vậy (x;y;z) là (2;4;4);(2;3;6);(3;3;3) và các hoán vị của chúng
2 câu a và c, rất dễ,bn vận dụng theo phương pháp sử dụng bất đẳng thức như mk vừa làm là đc
Cho z\(\in\)N và x,y \(\in\)Z thỏa mãn: x+y+xy=1
Tìm x,y,z sao cho A=(2z+1+42)(x2+y2+x2y2+1) là số chính phương lớn nhất.
1) Cho x,y \(\in Z\); x,y > 1 thỏa mãn : \(4x^2y^2-7x+7y\)là số chính phương. CMR: x=y
2) Cho a,b,c \(\in Z\)thỏa mãn \(a^2+b^2+c^2=2\left(ab+bc+ca\right).CMR:\)ab+bc+ca; ab,bc,ca đều là các số chính phương.
3) CMR: \(\forall n\in N\)thì số an = \(2^n+3^n+5^n+6^n\)đều không là số lập phương
4) Tìm \(x,y\in Z\)thỏa mãn \(x^3-y^3=285\left(x^2+y^2\right)\)
5) Cho \(a,b,c\in Z\)thỏa mãn \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\in Z\). CMR abc là 1 số lập phương
6) Tìm x,y \(\in Z\), \(x\le y\)để \(1+4^x+4^y\)là số chính phương