Từ đề bài suy ra xy - x - y > 0
=> xy - x - y + 1 > 1
=> (x - 1)(y - 1) > 1 hiển nhiên vì x - 1 ; y - 1 > 1
=> đpcm
Từ đề bài suy ra xy - x - y > 0
=> xy - x - y + 1 > 1
=> (x - 1)(y - 1) > 1 hiển nhiên vì x - 1 ; y - 1 > 1
=> đpcm
Tìm x;y thuộc N*.Biết x>2;y>2.Chứng tỏ rằng x+y<x.y
a, Chứng tỏ rằng (7^n + 1) . (7^n + 2) chia hết cho 3 và mọi số tự nhiên
b, Chứng tỏ rằng không tồn tại các số tự nhiên x,y,z sao cho : (x+y) . (y+z) . (z+x) + 2016 = 2017^2018
1. Cho a;b thuộc tập hợp số nguyên. Chứng minh ( a-b ) và ( b-a ) là hai số đối
2. Chứng tỏ rằng:
a, (x-y) + (m-n) = (x+m) - (y+n)
b, (x-y) - (m-n) = (x+n) - (y+m)
Cho x,y\(\in\)Z. Hãy chứng tỏ rằng: Nếu x > y thì x - y > 0
Bài 1: Tìm x,y $\in$∈ N, biết xy(x+y)=456789
Bài 2: Chứng tỏ tổng n số tự nhiên liên tiếp chia hết cho n, nếu n là số lẻ
Bài 3: Cho a,b $\in$∈ N. Chứng tỏ ab(a+b) chia hết cho 2
Biết rằng 7.x+2.y chia hết cho 13. Tìm x;y ( x;y \(\in\) N ). Chứng minh rằng 10.x+y chia hết cho 13
Cho x, y thuộc N và x + y chia hết cho 2
chứng tỏ x - y chia hết cho 2
chứng tỏ rằng
\(\left(7^n+1\right)\left(7^n+2\right)\)chia hết cho 3 với mọi số tự nhiên n
b) chứng tỏ rằng ko tồn tại các số tự nhiên x,y,z sao cho :
(x+y)(y+z)(z+x) + 2016 = \(2017^{2018}\)
Cho x,y là hai số nguyên . Chứng tỏ rằng x(x+1)-xy(x+y) chia hết cho 2