Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hank Pham
Xem chi tiết
Đào Quang Minh
Xem chi tiết
Đoàn Đức Duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2023 lúc 8:32

A<1-1/2+1/2-1/3+...+1/8-1/9=1-1/9=8/9

A>1/2-1/3+1/3-1/4+...+1/9-1/10=1/2-1/10=2/5

=>2/5<A<8/9

nguyễn đình tuấn
Xem chi tiết
Lê Vũ Thanh Giang
Xem chi tiết
hoàng khánh linh
Xem chi tiết
hoàng nguyễn linh chi
7 tháng 8 2020 lúc 14:40

bài này khó quá

Khách vãng lai đã xóa
Xyz OLM
7 tháng 8 2020 lúc 14:42

A =\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{20^2}=\frac{1}{2^2}\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{20^2}\right)\)

\(< \frac{1}{2^2}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\right)=\frac{1}{4}\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\right)\)

\(=\frac{1}{4}\left(1+1-\frac{1}{20}\right)=\frac{1}{4}\left(2-\frac{1}{20}\right)=\frac{1}{2}-\frac{1}{80}< \frac{1}{2}\left(\text{đpcm}\right)\)

Khách vãng lai đã xóa
Huyền Dịu
Xem chi tiết
.
3 tháng 1 2020 lúc 19:37

Ta có : \(\frac{1}{4^2}=\frac{1}{4.4}< \frac{1}{3.4}\)

           \(\frac{1}{5^2}=\frac{1}{5.5}< \frac{1}{4.5}\)     

           \(\frac{1}{6^2}=\frac{1}{6.6}< \frac{1}{5.6}\)

            ...

            \(\frac{1}{100^2}=\frac{1}{100.100}< \frac{1}{99.100}\)

\(\Rightarrow\)K<\(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

K<\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

K<\(\frac{1}{3}-\frac{1}{100}< \frac{1}{3}\)

\(\Rightarrow K< \frac{1}{3}\)  (1)

Ta có : \(\frac{1}{4^2}=\frac{1}{4.4}=\frac{1}{16}\)

            \(\frac{1}{5^2}=\frac{1}{5.5}>\frac{1}{5.6}\)

            \(\frac{1}{6^2}=\frac{1}{6.6}>\frac{1}{6.7}\)

             ...

             \(\frac{1}{99^2}=\frac{1}{99.99}>\frac{1}{99.100}\)

             \(\frac{1}{100^2}=\frac{1}{100.100}>\frac{1}{100.101}\)

\(\Rightarrow K>\frac{1}{16}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}+\frac{1}{100.101}\)

K>\(\frac{1}{16}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)

K>\(\frac{1}{16}+\frac{1}{5}-\frac{1}{101}>\frac{1}{5}\)  (2)

Từ (1) và (2)

\(\Rightarrow\frac{1}{5}< K< \frac{1}{3}\)

Vậy \(\frac{1}{5}< K< \frac{1}{3}.\)

Khách vãng lai đã xóa
huynh nhatminh
Xem chi tiết
Thu Trang
Xem chi tiết
JakiNatsumi
26 tháng 4 2018 lúc 21:32

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2002^2}+\dfrac{1}{2003^2}\)

\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2001.2002}+\dfrac{1}{2002.2003}\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2001}-\dfrac{1}{2002}+\dfrac{1}{2002}-\dfrac{1}{2003}\)

\(A< 1-\dfrac{1}{2003}< 1\)

Vậy \(A< 1\)