tìm m để pt sau có vô số nghiệm (m^3-3m^2-m+2)x=m^2+3m+2
cho phương trình \(m^2\)x +6= 4x+3m a) giải pt khi m=3 b) tìm m để pt có nghiệm x= 1,5 c) tìm m để pt có nghiệm vô nghiệm vô số nghiệm d) tìm m nguyên để pt trên có nghiệm
a) Thay m=3 vào pt ta được:
\(9x+6=4x+9\Leftrightarrow x=\dfrac{3}{5}\)
Vậy...
b) Thay x=-1,5 vào pt ta được:
\(m^2\left(-1,5\right)+6=4.\left(-1,5\right)+3m\)
\(\Leftrightarrow\dfrac{-3}{2}m^2-3m+12=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-4\end{matrix}\right.\)
Vậy...
c)Pt \(\Leftrightarrow x\left(m^2-4\right)=3m-6\)
Để pt vô nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}3m-6\ne0\\m^2-4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m=\pm2\end{matrix}\right.\)\(\Rightarrow m=-2\)
Để pt có vô số nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}3m-6=0\\m^2-4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m=2\\m=\pm2\end{matrix}\right.\)\(\Rightarrow m=2\)
d)Để pt có nghiệm \(\Leftrightarrow m^2-4\ne0\Leftrightarrow m\ne\pm2\)
\(\Rightarrow x=\dfrac{3m-6}{m^2-4}=\dfrac{3\left(m-2\right)}{\left(m-2\right)\left(m+2\right)}=\dfrac{3}{m+2}\)
Để \(x\in Z\Leftrightarrow\dfrac{3}{m+2}\in Z\)
Vì \(m\in Z\Leftrightarrow m+2\in Z\).Để \(\dfrac{3}{m+2}\in Z\Leftrightarrow m+2\inƯ\left(3\right)=\left\{-1;-3;1;3\right\}\)
\(\Leftrightarrow m=\left\{-3;-5;-1;1\right\}\) (tm)
Vậy...
cho pt: mx +3m=3x-2 (1)
a) tìm m để pt(1) tương đương với pt (x-2)^2-x(x-3)-3=0 (2)
b)tìm điều kiện m để pt (1) vô nghiệm
c)tìm m để pt (1) có nghiệm duy nhất nguyên
Cho pt x²-2(m+1)x+m²+3m=0(*) (m là tham số) tìm m để pt (*) có 2 nghiệm
Để pt có nghiệm thì \(\Delta'=\left(m+1\right)^2-\left(m^2+3m\right)\ge0\Leftrightarrow1-m\ge0\Leftrightarrow m\le1\)
a)Tự làm
b)Để pt có hai nghiệm <=>\(\Delta=4\left(m+1\right)^2-4\left(m^2+3m\right)=-4m+4\ge0\)
<=>\(m\le1\)
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+3m\end{matrix}\right.\)
Có \(P=\left(x_1-x_2\right)^2+\dfrac{1}{x_1+x_2}\)(đk: \(x_1+x_2\ne0\Rightarrow m\ne-1\))
\(=\left(x_1+x_2\right)^2-4x_1x_2+\dfrac{1}{x_1+x_2}\)
\(=4\left(m+1\right)^2-4\left(m^2+3m\right)+\dfrac{1}{2\left(m+1\right)}\)
\(=-4m+4+\dfrac{1}{2m+2}\)\(=\dfrac{-8m^2+9}{2m+2}\)
\(\Rightarrow P\left(2m+2\right)=-8m^2+9\)
\(\Leftrightarrow-8m^2-2mP+9-2P=0\) (1)
Coi (1) là pt bậc hai ẩn m và \(m\le1\), \(m\ne-1\)
Pt (1) có nghiệm\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=4P^2-64P+288\ge0\left(lđ\right)\\m_1+m_2\le2\\\left(m_1-1\right)\left(m_2-1\right)\le0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{P}\le2\\m_1.m_2-\left(m_1+m_2\right)+1\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}P\ge-2\\\dfrac{9-2P}{-8}+\dfrac{P}{4}+1\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}P\ge-16\\P\ge\dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow P\ge\dfrac{1}{4}\)
\(\Rightarrow P_{min}=\dfrac{1}{4}\Leftrightarrow m=1\) (thỏa)
Vậy...
Cho pt bậc 2 x^2+5x+3m=0 (m là tham số) A) thay m=0 rồi giải pt đã cho B) tìm m để pt x^2+5x+3m=0 có 2 nghiệm phân biệt
a) Với m=0
=> pt <=> \(x^2+5x=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
b) \(x^2+5x+3m=0\)
\(\Delta=25-12m\)
Để phương trình có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta>0\)
\(\Leftrightarrow25-12m>0\)
\(\Leftrightarrow m< \dfrac{25}{12}\)
1 Cho pt:\(x^2+2mx-3m^2=0\).Tìm m để pt có 2 nghiệm \(x_1< 1< x_2\)
2 Tìm m để pt sau có 2 nghiệm cùng dấu,khi đó 2 nghiệm mang dấu gì?
a)\(x^2-2mx+5m-4=0\)
b)\(mx^2+mx+3=0\)
3 Tìm m để pt \(\left(m+1\right)x^2+mx+3=0\) có 2 nghiệm cùng lớn hơn -1
Giúp em với huhu :<,bài nào cũng đc ạ,em cảm ơn!
3.
Phương trình có 2 nghiệm khi:
\(\left\{{}\begin{matrix}m+1\ne0\\\Delta=m^2-12\left(m+1\right)\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\\left[{}\begin{matrix}m\ge6+4\sqrt{3}\\m\le6-4\sqrt{3}\end{matrix}\right.\end{matrix}\right.\) (1)
Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m}{m+1}\\x_1x_2=\dfrac{3}{m+1}\end{matrix}\right.\)
Hai nghiệm cùng lớn hơn -1 \(\Rightarrow-1< x_1\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_1+1>0\\x_1+x_2>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{m+1}-\dfrac{m}{m+1}+1>0\\-\dfrac{m}{m+1}>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{m+1}>0\\\dfrac{m+2}{m+1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>-1\)
Kết hợp (1) \(\Rightarrow\left[{}\begin{matrix}-1< m< 6-4\sqrt{3}\\m\ge6+4\sqrt{3}\end{matrix}\right.\)
Những bài này đều là dạng toán lớp 10, thi lớp 9 chắc chắn sẽ không gặp phải
1. Có 2 cách giải:
C1: đặt \(f\left(x\right)=x^2+2mx-3m^2\)
\(x_1< 1< x_2\Leftrightarrow1.f\left(1\right)< 0\Leftrightarrow1+2m-3m^2< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
C2: \(\Delta'=4m^2\ge0\) nên pt luôn có 2 nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-3m^2\end{matrix}\right.\)
\(x_1< 1< x_2\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)
\(\Leftrightarrow-3m^2+2m+1< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
2.
a. Pt có 2 nghiệm cùng dấu khi:
\(\left\{{}\begin{matrix}\Delta'=m^2-5m+4\ge0\\x_1x_2=5m-4>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge4\\m\le1\end{matrix}\right.\\m>\dfrac{4}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m\ge4\\\dfrac{4}{5}< m\le1\end{matrix}\right.\)
Khi đó \(x_1+x_2=2m>2.\dfrac{4}{5}>0\) nên 2 nghiệm cùng dương
b. Pt có 2 nghiệm cùng dấu khi: \(\left\{{}\begin{matrix}m\ne0\\\Delta=m^2-12m\ge0\\x_1x_2=\dfrac{3}{m}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge12\\m\le0\end{matrix}\right.\\m>0\end{matrix}\right.\) \(\Rightarrow m\ge12\)
Khi đó \(x_1+x_2=-1< 0\) nên 2 nghiệm cùng âm
tìm m để pt x^4 +(3m-1)x^3-(3m-2)x^2+(3m-1)x+1 vô ngiệm
tìm m để pt có nghiệm duy nhất
\(\dfrac{x}{\sqrt{x^2-2mx+m^2-3m+2}}=\sqrt{x^2-2mx+m^2-3m+2}\)
ĐKXĐ: \(x^2-2mx+m^2-3m+2>0\)
\(\dfrac{x}{\sqrt{x^2-2mx+m^2-3m+2}}=\sqrt{x^2-2mx+m^2-3m+2}\)
- Với \(x< 0\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP>0\end{matrix}\right.\) pt vô nghiệm
- Với \(x\ge0\)
\(\Rightarrow x=x^2-2mx+m^2-3m+2=0\)
\(\Rightarrow x^2-\left(2m+1\right)x+m^2-3m+2=0\) (1)
+ Với \(m^2-3m+2=0\Rightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)
\(m=1\Rightarrow x^2-3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) có 2 nghiệm (ktm)
\(m=2\Rightarrow x^2-5x=0\Rightarrow x=\left\{0;5\right\}\) ktm
+ Với \(m^2-3m+2\ne0\)
\(\Rightarrow\) pt đã cho có nghiệm duy nhất khi \(\left(1\right)\) có đúng 1 nghiệm dương
\(\Rightarrow x_1x_2=m^2-3m+2< 0\)
\(\Rightarrow1< m< 2\)
Cho pt: x^2-(m+4)x+3m+3=0. tìm m để PT có nghiệm là x=2. Tìm nghiệm còn lại.
Phương trình có nghiệm là x = 2. Thay x = 2 vào phương trình để tìm m:
\(2^2-2\left(m+4\right)+3m+3=0\)
\(4-2m-8+3m+3=0\)
\(-1+m=0\)
\(m=1\)
Vậy phương trình có nghiệm x = 2 khi m = 1
Phương trình có nghiệm là x = 2. Thay x = 2 vào phương trình để tìm m:
$2^2-2\left(m+4\right)+3m+3=0$22−2(m+4)+3m+3=0
$4-2m-8+3m+3=0$4−2m−8+3m+3=0
$-1+m=0$−1+m=0
$m=1$m=1
Vậy phương trình có nghiệm x = 2 khi m = 1
với x=2 ta có:
22-(m+4)*2+3m+3=0
<=>4-2m+8+3m+3=0
<=>x-1=0
<=>x=1
cho pt x2 -4x+3m-2=o
a) giải pt vs m=1
b)tìm m để giải pt vô nghiệm
c)tìm m để pt có 2 nghiệm trái dấu
lớp 10 nha giúp mk
a) tại m=1 thì pt có dạng \(x^2-4x+3-2=0\)
\(\Leftrightarrow x^2-4x+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2=0\)
\(\Leftrightarrow x=\frac{1}{2}\)