Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
꧁❥Hikari-Chanツ꧂
Xem chi tiết
Lê Thị Thục Hiền
7 tháng 7 2021 lúc 17:46

a) Thay m=3 vào pt ta được:

\(9x+6=4x+9\Leftrightarrow x=\dfrac{3}{5}\)

Vậy...

b) Thay x=-1,5 vào pt ta được:

\(m^2\left(-1,5\right)+6=4.\left(-1,5\right)+3m\)

\(\Leftrightarrow\dfrac{-3}{2}m^2-3m+12=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-4\end{matrix}\right.\)

Vậy...

c)Pt \(\Leftrightarrow x\left(m^2-4\right)=3m-6\)

Để pt vô nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}3m-6\ne0\\m^2-4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m=\pm2\end{matrix}\right.\)\(\Rightarrow m=-2\)

Để pt có vô số nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}3m-6=0\\m^2-4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m=2\\m=\pm2\end{matrix}\right.\)\(\Rightarrow m=2\)

d)Để pt có nghiệm \(\Leftrightarrow m^2-4\ne0\Leftrightarrow m\ne\pm2\)

 \(\Rightarrow x=\dfrac{3m-6}{m^2-4}=\dfrac{3\left(m-2\right)}{\left(m-2\right)\left(m+2\right)}=\dfrac{3}{m+2}\)

Để \(x\in Z\Leftrightarrow\dfrac{3}{m+2}\in Z\)

Vì \(m\in Z\Leftrightarrow m+2\in Z\).Để \(\dfrac{3}{m+2}\in Z\Leftrightarrow m+2\inƯ\left(3\right)=\left\{-1;-3;1;3\right\}\)

\(\Leftrightarrow m=\left\{-3;-5;-1;1\right\}\) (tm)

Vậy...

Salty Hiếu
Xem chi tiết
NV Phú
Xem chi tiết
Trần Minh Hoàng
28 tháng 5 2021 lúc 22:52

Để pt có nghiệm thì \(\Delta'=\left(m+1\right)^2-\left(m^2+3m\right)\ge0\Leftrightarrow1-m\ge0\Leftrightarrow m\le1\)

Lê Thị Thục Hiền
28 tháng 5 2021 lúc 23:16

a)Tự làm

b)Để pt có hai nghiệm <=>\(\Delta=4\left(m+1\right)^2-4\left(m^2+3m\right)=-4m+4\ge0\)

<=>\(m\le1\)

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+3m\end{matrix}\right.\)

Có \(P=\left(x_1-x_2\right)^2+\dfrac{1}{x_1+x_2}\)(đk: \(x_1+x_2\ne0\Rightarrow m\ne-1\))

\(=\left(x_1+x_2\right)^2-4x_1x_2+\dfrac{1}{x_1+x_2}\)

\(=4\left(m+1\right)^2-4\left(m^2+3m\right)+\dfrac{1}{2\left(m+1\right)}\)

\(=-4m+4+\dfrac{1}{2m+2}\)\(=\dfrac{-8m^2+9}{2m+2}\)

\(\Rightarrow P\left(2m+2\right)=-8m^2+9\)

\(\Leftrightarrow-8m^2-2mP+9-2P=0\) (1)

Coi (1) là pt bậc hai ẩn m và \(m\le1\)\(m\ne-1\)

Pt (1) có nghiệm\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=4P^2-64P+288\ge0\left(lđ\right)\\m_1+m_2\le2\\\left(m_1-1\right)\left(m_2-1\right)\le0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{P}\le2\\m_1.m_2-\left(m_1+m_2\right)+1\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}P\ge-2\\\dfrac{9-2P}{-8}+\dfrac{P}{4}+1\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}P\ge-16\\P\ge\dfrac{1}{4}\end{matrix}\right.\)

\(\Rightarrow P\ge\dfrac{1}{4}\)

\(\Rightarrow P_{min}=\dfrac{1}{4}\Leftrightarrow m=1\) (thỏa)

Vậy...

NV Phú
28 tháng 5 2021 lúc 22:50

Các cao nhân giúp mình với ạ 😥😥

 

8a1 - Nguyễn Hân
Xem chi tiết
8a1 - Nguyễn Hân
19 tháng 3 2023 lúc 19:44

Giúp vs m.n ơi mai mình kt òi

Minh Hiếu
19 tháng 3 2023 lúc 20:40

a) Với m=0

=> pt <=> \(x^2+5x=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

b) \(x^2+5x+3m=0\)

\(\Delta=25-12m\)

Để phương trình có 2 nghiệm phân biệt 

\(\Leftrightarrow\Delta>0\)

\(\Leftrightarrow25-12m>0\)

\(\Leftrightarrow m< \dfrac{25}{12}\)

Dân Chơi Đất Bắc=))))
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 2 2022 lúc 12:15

3.

Phương trình có 2 nghiệm khi:

\(\left\{{}\begin{matrix}m+1\ne0\\\Delta=m^2-12\left(m+1\right)\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\\left[{}\begin{matrix}m\ge6+4\sqrt{3}\\m\le6-4\sqrt{3}\end{matrix}\right.\end{matrix}\right.\) (1)

Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m}{m+1}\\x_1x_2=\dfrac{3}{m+1}\end{matrix}\right.\)

Hai nghiệm cùng lớn hơn -1 \(\Rightarrow-1< x_1\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_1+1>0\\x_1+x_2>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{m+1}-\dfrac{m}{m+1}+1>0\\-\dfrac{m}{m+1}>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{m+1}>0\\\dfrac{m+2}{m+1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>-1\)

Kết hợp (1) \(\Rightarrow\left[{}\begin{matrix}-1< m< 6-4\sqrt{3}\\m\ge6+4\sqrt{3}\end{matrix}\right.\)

Những bài này đều là dạng toán lớp 10, thi lớp 9 chắc chắn sẽ không gặp phải

Nguyễn Việt Lâm
15 tháng 2 2022 lúc 12:06

1. Có 2 cách giải:

C1: đặt \(f\left(x\right)=x^2+2mx-3m^2\)

\(x_1< 1< x_2\Leftrightarrow1.f\left(1\right)< 0\Leftrightarrow1+2m-3m^2< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)

C2: \(\Delta'=4m^2\ge0\) nên pt luôn có 2 nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-3m^2\end{matrix}\right.\)

\(x_1< 1< x_2\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)

\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)

\(\Leftrightarrow-3m^2+2m+1< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)

Nguyễn Việt Lâm
15 tháng 2 2022 lúc 12:09

2.

a. Pt có 2 nghiệm cùng dấu khi:

\(\left\{{}\begin{matrix}\Delta'=m^2-5m+4\ge0\\x_1x_2=5m-4>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge4\\m\le1\end{matrix}\right.\\m>\dfrac{4}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m\ge4\\\dfrac{4}{5}< m\le1\end{matrix}\right.\)

Khi đó \(x_1+x_2=2m>2.\dfrac{4}{5}>0\) nên 2 nghiệm cùng dương

b. Pt có 2 nghiệm cùng dấu khi: \(\left\{{}\begin{matrix}m\ne0\\\Delta=m^2-12m\ge0\\x_1x_2=\dfrac{3}{m}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge12\\m\le0\end{matrix}\right.\\m>0\end{matrix}\right.\) \(\Rightarrow m\ge12\)

Khi đó \(x_1+x_2=-1< 0\) nên 2 nghiệm cùng âm

Pham Thi Thanh Thuy
Xem chi tiết
đấng ys
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 11 2021 lúc 18:31

ĐKXĐ: \(x^2-2mx+m^2-3m+2>0\)

\(\dfrac{x}{\sqrt{x^2-2mx+m^2-3m+2}}=\sqrt{x^2-2mx+m^2-3m+2}\)

- Với \(x< 0\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP>0\end{matrix}\right.\) pt vô nghiệm

- Với \(x\ge0\)

\(\Rightarrow x=x^2-2mx+m^2-3m+2=0\)

\(\Rightarrow x^2-\left(2m+1\right)x+m^2-3m+2=0\) (1)

+ Với \(m^2-3m+2=0\Rightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\) 

\(m=1\Rightarrow x^2-3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) có 2 nghiệm (ktm)

\(m=2\Rightarrow x^2-5x=0\Rightarrow x=\left\{0;5\right\}\) ktm

+ Với \(m^2-3m+2\ne0\)

\(\Rightarrow\) pt đã cho có nghiệm duy nhất khi \(\left(1\right)\) có đúng 1 nghiệm dương

\(\Rightarrow x_1x_2=m^2-3m+2< 0\)

\(\Rightarrow1< m< 2\)

Khánh Linh
Xem chi tiết
Nguyễn Hoàng Tiến
22 tháng 5 2016 lúc 15:46

Phương trình có nghiệm là x = 2. Thay x = 2 vào phương trình để tìm m:

\(2^2-2\left(m+4\right)+3m+3=0\)

\(4-2m-8+3m+3=0\)

\(-1+m=0\)

\(m=1\)

Vậy phương trình có nghiệm x = 2 khi m = 1

l҉o҉n҉g҉ d҉z҉
22 tháng 5 2016 lúc 15:48

Phương trình có nghiệm là x = 2. Thay x = 2 vào phương trình để tìm m:

$2^2-2\left(m+4\right)+3m+3=0$222(m+4)+3m+3=0

$4-2m-8+3m+3=0$42m8+3m+3=0

$-1+m=0$1+m=0

$m=1$m=1

Vậy phương trình có nghiệm x = 2 khi m = 1


 

Thắng Nguyễn
22 tháng 5 2016 lúc 15:50

với x=2 ta có:

22-(m+4)*2+3m+3=0

<=>4-2m+8+3m+3=0

<=>x-1=0

<=>x=1

nhu
Xem chi tiết
Vũ Phương Hoa
24 tháng 11 2015 lúc 16:31

a) tại m=1 thì pt có dạng \(x^2-4x+3-2=0\) 

                                \(\Leftrightarrow x^2-4x+1=0\)

                                 \(\Leftrightarrow\left(2x-1\right)^2=0\)

                                 \(\Leftrightarrow x=\frac{1}{2}\)