Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thiện Minh
Xem chi tiết
Nguyễn Xuân Tiến 24
1 tháng 3 2018 lúc 20:29

Áp dụng bất đẳng thức AM-GM cho hai số a và b không âm:

\(\left(a+b\right)\left(ab+1\right)\ge2\sqrt{ab}.2\sqrt{ab}=4\left(\sqrt{ab}\right)^2=4ab\)(đpcm)

Trần Quốc Lộc
23 tháng 5 2018 lúc 20:59

Áp dụng BDT Cô-si: \(x+y\ge2\sqrt{xy}\)

\(\Rightarrow a+b\ge2\sqrt{ab}\\ ab+1\ge2\sqrt{ab}\\ \Rightarrow\left(a+b\right)\left(ab+1\right)\ge2\sqrt{ab}\cdot2\sqrt{ab}=4ab\left(đpcm\right)\)

Xem chi tiết
☆MĭηɦღAηɦ❄
26 tháng 8 2020 lúc 21:40

Ta có : 

\(\frac{4ab+1}{4ab}=1+\frac{1}{4ab}\ge1+\frac{1}{\left(a+b\right)^2}\)

\(\Rightarrow\frac{4ab}{4ab+1}\le\frac{1}{1+\frac{1}{\left(a+b\right)^2}}\)

Tương tự ta được : 

\(\frac{4bc}{4bc+1}\le\frac{1}{1+\frac{1}{\left(b+c\right)^2}};\frac{4ca}{4ca+1}\le\frac{1}{1+\frac{1}{\left(c+a\right)^2}}\)

\(\Rightarrow VP\le\frac{1}{1+\frac{1}{\left(a+b\right)^2}}+\frac{1}{1+\frac{1}{\left(b+c\right)^2}}+\frac{1}{1+\frac{1}{\left(c+a\right)^2}}\)

BĐT cần chứng minh tương đương với 

\(a+b+c\ge\frac{1}{1+\frac{1}{\left(a+b\right)^2}}+\frac{1}{1+\frac{1}{\left(b+c\right)^2}}+\frac{1}{1+\frac{1}{\left(c+a\right)^2}}\) (1)

Đặt \(a+b=x;b+c=y;c+a=z\)

\(x,y,z>0;x+y+z=2\left(a+b+c\right)\)

\(\Rightarrow\left(1\right)\Leftrightarrow x+y+z\ge2\left(\frac{1}{1+\frac{1}{x^2}}+\frac{1}{1+\frac{1}{y^2}}+\frac{1}{1+\frac{1}{z^2}}\right)\)

\(VP=\frac{2x^2}{x^2+1}+\frac{2y^2}{y^2+1}+\frac{2z^2}{z^2+1}\le\frac{2x^2}{2x}+\frac{2y^2}{2y}+\frac{2z^2}{2z}=x+y+z=VT\)

Vậy BĐT được chứng minh

Dấu "=" xảy ra khi \(x=y=z=1\Leftrightarrow a=b=c=\frac{1}{2}\)

Khách vãng lai đã xóa
yen dang
27 tháng 8 2020 lúc 20:56

\(\frac{4ab}{4ab+1}< =\frac{4ab}{2\sqrt{4ab}}=\sqrt{ab}\)

CMTT =>\(\hept{\begin{cases}\frac{4bc}{4bc+1}< =\sqrt{bc}\\\frac{4ac}{4ac+1}< =\sqrt{ac}\end{cases}}\)

Ta có \(a+b+c-\sqrt{ab}-\sqrt{bc}-\sqrt{ac}\)

=\(\frac{1}{2}\left(\left(a+2\sqrt{ab}+b\right)+\left(b+2\sqrt{bc}+c\right)+\left(c+2\sqrt{ac}+a\right)\right)\)

=\(\frac{1}{2}\left(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\right)>=0\)

dấu = xảy ra khi a=b=c.

\(=>a+b+c>=\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)\(>=\frac{4ab}{4ab+1}+\frac{4bc}{4bc+1}+\frac{4ac}{4ac+1}\)

Khách vãng lai đã xóa
Hồng Sakura
Xem chi tiết
Aki Tsuki
31 tháng 5 2018 lúc 16:44

\(a^4+b^4+2=a^4+b^4+1+1\ge4\sqrt[4]{a^{4\cdot}\cdot b^4\cdot1\cdot1}=4ab\left(đpcm\right)\)

Dấu ''='' xảy ra khi a = b

Nguyễn Nhật Minh
31 tháng 5 2018 lúc 17:40

Áp dụng BĐT Cauchy cho 4 số không âm , ta có :

a4 + b4 + 1 + 1 ≥ \(4\sqrt[4]{a^4.b^4.1.1}=4ab\)

Đẳng thức xảy ra khi và chỉ khi : a = b = 1

Hiiiii~
31 tháng 5 2018 lúc 16:51

Giải:

Ta có: a, b > 0

Áp dụng bất đẳng thức Cauchy, ta có:

\(\dfrac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow\left(\dfrac{a+b}{2}\right)^2\ge\left(\sqrt{ab}\right)^2\)

\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{4}\ge ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

Võ Đức Tân
Xem chi tiết
Nguyễn Mạnh Nam
21 tháng 3 2020 lúc 8:32

Bất phương trình tương đương \(\left(a+b\right)^2-4ab\)≥0

<=>\(a^2+2ab+1-4ab\)≥0

<=>\(a^2-2ab+1\)≥0

<=>\(\left(a-1\right)^2\)≥0

Suy ra \(\left(a+b\right)^2\)≥4ab

Khách vãng lai đã xóa
Nguyễn Ngọc Lộc
21 tháng 3 2020 lúc 8:32

- Áp dụng bất đẳng thắc cauchuy ta có :\(\left(\frac{a+b}{2}\right)^2\ge ab\)

=> \(\left(a+b\right)^2\ge4ab\)

- Dấu bằng xảy ra <=> a = b .

Khách vãng lai đã xóa
Ami Mizuno
21 tháng 3 2020 lúc 8:36

Giả sử: (a+b)2\(\ge\)4ab

\(\Leftrightarrow\)a2+b2+2ab\(\ge\)4ab

\(\Leftrightarrow\)a2+b2-2ab\(\ge\)0

\(\Leftrightarrow\)(a-b)2\(\ge\)0 (luôn đúng)

Suy ra (a+b)2\(\ge\)4ab

Khách vãng lai đã xóa
trần xuân quyến
Xem chi tiết
Thắng Nguyễn
13 tháng 5 2018 lúc 22:44

vào tcn của tui ấn vào Thông kê hỏi đáp kéo xuống

trần xuân quyến
14 tháng 5 2018 lúc 18:08

là thế nào bạn ơi

Hoàng Anh Tú
Xem chi tiết
Nguyễn Trang
19 tháng 10 2015 lúc 21:49

Với a,b không âm,áp dụng CAUCHY 2 lần ta có

\(a+4b\ge2\sqrt{4ab}=4\sqrt{ab}\)(1)

\(1+4ab\ge2\sqrt{4ab}=4\sqrt{ab}\)(2)

Nhân 2 vế của (1) và (2) ta có:\(\left(a+4b\right)\left(1+4ab\right)\ge16ab\)

Lại chia cả 2 vế cho (1+4ab) ta được điều cần cminh...

Trần Thị Linh Đan
19 tháng 10 2015 lúc 21:14

các bạn ơi **** mình cái mình đang cần khôi phục ****

Cố gắng hơn nữa
Xem chi tiết
Tang Khanh Hung
Xem chi tiết

BĐT cần chứng minh tương đương với

\(\left(a+b\right)\left(1+ab\right)\ge4ab\)

Thật vậy

Áp dụng bđt AM-GM ta có

\(a+b\ge2\sqrt{ab}\)

\(1+ab\ge2\sqrt{ab}\)

Nhân từng vế 2 bđt trên => đpcm

Dấu "=" xảy ra khi a=b=c>0

Khách vãng lai đã xóa

lộn, a=b>0 

Khách vãng lai đã xóa
Kiệt Nguyễn
20 tháng 9 2020 lúc 6:37

\(a+b\ge\frac{4ab}{1+ab}\Leftrightarrow\left(a+b\right)\left(1+ab\right)\ge4ab\Leftrightarrow a+b+a^2b+ab^2\ge4ab\Leftrightarrow\left(a+ab^2-2ab\right)+\left(b+a^2b-2ab\right)\ge0\Leftrightarrow a\left(b^2-2b+1\right)+b\left(a^2-2a+1\right)\ge0\Leftrightarrow a\left(b-1\right)^2+b\left(a-1\right)^2\ge0\)(Đúng do a, b > 0 và \(\left(a-1\right)^2\ge0,\left(b-1\right)^2\ge0\))

Đẳng thức xảy ra khi a = b > 0

Khách vãng lai đã xóa
Vinh Lê Thành
Xem chi tiết
Nyatmax
29 tháng 9 2019 lúc 8:27

Ta bien doi BDT can chung minh

\(a+b\ge\frac{4ab}{1+ab}\)

\(\Leftrightarrow a+a^2b+b+ab^2\ge4ab\)

\(\Leftrightarrow a+\frac{1}{a}+b+\frac{1}{b}\ge4\)

Ta co:

\(a+\frac{1}{a}\ge2\)

\(b+\frac{1}{b}\ge2\)

\(\Rightarrow a+\frac{1}{a}+b+\frac{1}{b}\ge4\)

Dau '=' xay ra khi \(a=b=1\)