Áp dụng bđt cosi ta có :
(a+b) . (ab+1)
>= \(2\sqrt{a.b}\). \(2\sqrt{ab.1}\)
= \(4\sqrt{ab^2}\)
= 4ab
=> ĐPCM
Dấu "=" xảy ra <=> a = b = +-1
Tk mk nha
Áp dụng bất đẳng thức Cauchy ta có :
\(\left(\frac{a+b}{2}\right)^2\ge ab\ge0\)
\(\left(\frac{ab+1}{2}\right)^2\ge ab\ge0\)
\(\Leftrightarrow\left(\frac{a+b}{2}\right)^2\times\left(\frac{ab+1}{2}\right)^2\ge\left(ab\right)^2\)
\(\Leftrightarrow\left[\left(a+b\right)\left(ab+1\right)\right]^2\ge16\times\left(ab\right)^2\)
\(\Leftrightarrow\left(a+b\right)\left(ab+1\right)\ge4ab\)(đpcm)