chứng minh rằng với mọi n nguyên dương ta có \(n^3+5n⋮6\)
Chứng minh rằng với mọi số nguyên dương n ta đều có n3 + 5n chia hết cho 6
Ta co : \(n^3+5n=n^3-n+6n=n\left(n^2-1\right)+6n=n\left(n-1\right)\left(n+1\right)+6n\)
Vi n la so nguyen duong nen suy ra : Tich cua ba so nguyen duong lien tiep :
\(n-1,n,n+1\) chia het cho 2 va 3
\(n\left(n-1\right)\left(n+1\right)\) chia het cho 6
\(\Rightarrow n^3+5n\) chia het cho 6 (dpcm)
**** nhe
Chứng minh rằng với mọi số nguyên dương n thì (5n+15)(n+6) chia hết cho 10
Vì số n là số nguyên dương\(\Rightarrow\) n=2k hoacn=2k+1 (k\(\in\)N*)
Với n=2k \(\Rightarrow\) (5n+15)(n+6)=(10k+15)(2k+6)
=10x2k2+10x6k+30k+80
=10x2k2+10x6k+10x3k+10x8
=10(2k2+6k+3k+8) chia hết cho 10
Với n=2k+1 \(\Rightarrow\) (5n+15)(n+6)=[10(k+1)+15](2k+1+6)
=(10k+10+15)(2k+7)
=10x2kk+10x7k+10x2k+10x7+30k+105
=10(2kk+7k+2k+7+2k)+105
Vì 10(2kk+7k+2k+7+2k) chia hết cho 10 mà 2x105 chia hết cho 10
 \(\Rightarrow\) 105 chia hết cho 10
Vậy n là số nguyên dương thì (5n+15)(n+6) chia hết cho 10
Chứng minh rằng với mọi N nguyên dương, ta đều có \(n^3+5n\) chia hết cho 6
Ta có: \(n^3+5n=n^3-n+6n=n\left(n^2-1\right)+6n=n\left(n-1\right)\left(n+1\right)+6n\)Vì n là số nguyên dương
=> Tích của ba số nguyên dương liên tiếp: n-1, n, n+1 chia hết cho 2 (vì trong 3 số trên chắc chắn có 1 hoặc 2 số lẻ) và chia hết cho 3 (vì trong 3 số trên chắc chắn có 1 số chia hết cho 3)
Mà 6n chia hết cho 6
=> n(n-1)(n+1) +6n chia hết cho 6
=> \(n^3+5n\) chia hết cho 6 (đpcm)
CHỨNG MINH RẰNG VỚI MỌI N NGUYÊN DƯƠNG TA CÓ :
B, n^3 +11n chia hết cho 6 . HELP ME
Ta có:
n3 + 11n
= n3 - n + 12n
= n.(n2 - 1) + 12n
= n.(n - 1).(n + 1) + 12n
= (n - 1).n.(n + 1) + 12n
Vì (n - 1).n.(n + 1) là tích 3 số tự nhiên liên tiếp => tích này chia hết cho 2 và 3
Mà (2;3)=1 => (n - 1).n.(n + 1) chia hết cho 6; 12n chia hết cho 6
=> n3 + 11n chia hết cho 6 ( đpcm)
Chứng minh rằng với mọi số nguyên dương n ≥ 4 ta có: 3\(^{n-1}\) > n(n+2)
- Với \(n=4\Rightarrow3^3>4.6\) (đúng)
- Giả sử BĐT đã cho đúng với \(n=k\ge4\) hay \(3^{k-1}>k\left(k+2\right)\)
- Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay: \(3^k>\left(k+1\right)\left(k+3\right)\)
Thật vậy, do \(k\ge4\Rightarrow k-3>0\), ta có:
\(3^k=3.3^{k-1}>3k\left(k+2\right)=3k^2+6k=\left(k^2+4k+3\right)+\left(2k^2+2k-3\right)\)
\(=\left(k+1\right)\left(k+3\right)+2k^2+k+\left(k-3\right)>\left(k+1\right)\left(k+3\right)\) (đpcm)
Chứng minh rằng với mọi n thuộc N sao ta đều có n3 +5n chia hết 6
n^3 + 5n
= n^3 - n + 6n
= n(n^2 - 1) + 6n
= n(n - 1)(n + 1) + 6n
(n-1)n(n+1) là tích của 3 stn liên tiếp
=> n(n-1)(n+1) chia hết cho 2 và 3 mà (2;3) = 1
=> n(n-1)(n+1) chia hết cho 6
có 6n chia hết cho 6
=> n(n-1)(n+1) + 6n chia hết cho 6
=> n^3 + 5n chia hết cho 6 với mọi n thuộc N
Giúp mình với: chứng minh rằng với mọi số nguyên tố n, ta có:
a)n^5-5n^3+4n chia hết cho 120
b) n^3-3n^2-n+3 chia hết cho 48 với mọi n lẻ?
\(a,n^5-5n^3+4n\)
\(=n\left(n^4-5n^2+4\right)\)
\(=n\left(n^4-n^2-4n^2+4\right)\)
\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-4\right)\right]\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮2;3;4;5\)\(\Rightarrow\) \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\) Hay \(n^5-5n^3+4⋮120\)
Chứng minh rằng với mọi n thuộc N ta luôn có:
1/1.6 + 1/6.11 + 1/11.16 + ......+ 1/( 5n + 1) (5n + 6) = n+1/ 5n + 6
Chứng minh rằng với mọi số nguyên dương n thì:
\(5n=1^2+2^2+3^2+...+n^2=\frac{1}{6}n\left(n+1\right)\left(2n+1\right)\)
(quy nạp)
\(1^2+2^2+3^2+.......+n^2=1\times\left(2-1\right)+2\times\left(3-1\right)+.......+n\left(\left(n+1\right)-1\right)\)=\(\left(1.2+2.3+3.4+......+n\left(n+1\right)\right)-\left(1+2+3+.....+n\right)\)=\(\frac{n\left(n+1\right)\left(n+2\right)-0.1.2}{3}-\frac{n\left(n+1\right)}{2}=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
sử dụng qui nạp:
1² + 2² + 3² + 4² + ...+ n² = \(\frac{n\left(n+1\right)\left(2n+1\right)}{6}\) (*)
(*) đúng khi n= 1
giả sử (*) đúng với n= k, ta có:
1² + 2² + 3² + 4² + ...+ k² = \(\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) (1)
ta cm (*) đúng với n = k +1, thật vậy từ (1) cho ta:
1² + 2² + 3² + 4² + ...+ k² + (k + 1)² = \(\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) + (k + 1)²
= (k+1)\(\left(\frac{k\left(2k+1\right)}{6}+\left(k+1\right)\right)\)= (k + 1)\(\frac{2k^2+k+6k+6}{6}\)
= (k + 1)\(\frac{2k^2+7k+6}{6}\) = (k + 1)\(\frac{2k^2+4k+3k+6}{6}\)
= (k + 1)\(\frac{2k\left(k+2\right)+3\left(k+2\right)}{6}\) = (k + 1)\(\frac{\left(k+2\right)\left(2k+3\right)}{6}\)
vậy (*) đúng với n = k + 1, theo nguyên lý qui nạp (*) đúng với mọi n thuộc N*
Hồng Trinh đúng rồi nhưng mà dùng quy nạp cơ