- Với \(n=4\Rightarrow3^3>4.6\) (đúng)
- Giả sử BĐT đã cho đúng với \(n=k\ge4\) hay \(3^{k-1}>k\left(k+2\right)\)
- Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay: \(3^k>\left(k+1\right)\left(k+3\right)\)
Thật vậy, do \(k\ge4\Rightarrow k-3>0\), ta có:
\(3^k=3.3^{k-1}>3k\left(k+2\right)=3k^2+6k=\left(k^2+4k+3\right)+\left(2k^2+2k-3\right)\)
\(=\left(k+1\right)\left(k+3\right)+2k^2+k+\left(k-3\right)>\left(k+1\right)\left(k+3\right)\) (đpcm)