Bài 1: Phương pháp quy nạp toán học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Jack Viet

Chứng minh rằng với mọi số nguyên dương n ≥ 4 ta có: 3\(^{n-1}\) > n(n+2)

Nguyễn Việt Lâm
3 tháng 12 2021 lúc 10:44

- Với \(n=4\Rightarrow3^3>4.6\) (đúng)

- Giả sử BĐT đã cho đúng với \(n=k\ge4\) hay \(3^{k-1}>k\left(k+2\right)\) 

- Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay: \(3^k>\left(k+1\right)\left(k+3\right)\)

Thật vậy, do \(k\ge4\Rightarrow k-3>0\), ta có:

\(3^k=3.3^{k-1}>3k\left(k+2\right)=3k^2+6k=\left(k^2+4k+3\right)+\left(2k^2+2k-3\right)\)

\(=\left(k+1\right)\left(k+3\right)+2k^2+k+\left(k-3\right)>\left(k+1\right)\left(k+3\right)\) (đpcm)


Các câu hỏi tương tự
Bình Trần Thị
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Trần Nhật Quang
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Giao nguyen
Xem chi tiết
Wind
Xem chi tiết
Nguyễn Nam Khánh
Xem chi tiết