Bài 1: Phương pháp quy nạp toán học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bình Trần Thị

cho số thực x>-1 . chứng minh rằng : (1+x)n1+nx với mọi số nguyên dương n

ngonhuminh
21 tháng 2 2017 lúc 8:35

Giao lưu:

\(\left\{\begin{matrix}x>-1\\n\in N\\\left(1+x\right)^n\ge1+nx\end{matrix}\right.\) (I)

\(x>-1\Rightarrow\left(1+x\right)>1\Rightarrow\left(1+x\right)^n>1voi\forall n\in N\)

với x=0 1^n>=1 luôn đúng ta cần c/m với x khác 0

\(\left\{\begin{matrix}n=1\Rightarrow\left(1+x\right)^1\ge\left(1+x\right)...\left\{dung\right\}\\n=2\Rightarrow\left(1+x\right)^2\ge\left(1+2x\right)...\left\{dung\right\}\\n=2\Rightarrow\left(1+x\right)^3\ge\left(1+3x\right)...\left\{dung\right\}\end{matrix}\right.\)

C/m bằng phản chứng:

Giả /sủ từ giá trị (k+1) nào đó ta có điều ngược lại (*)

Nghĩa là: khi n đủ lớn BĐT (I) không đúng nữa. và chỉ đúng đến (n=k)(**)

Như vậy coi (**) đúng và ta chứng minh (*) là sai .

với n=k ta có: \(\left(1+x\right)^k\ge\left(1+kx\right)\) (1) theo (*)

vói n=(k+1) ta có theo (**)

\(\left(1+x\right)^{k+1}\le\left[1+\left(k+1\right)x\right]\Leftrightarrow\left(1+x\right)\left(1+x\right)^k\le\left[1+kx+x\right]\)(2)

chia hai vế (2) cho [(1+x)>0 {do x>-1}] BĐT không đổi

\(\left(2\right)\Leftrightarrow\left(1+x\right)^k\le\frac{\left[\left(1+kx\right)+x\right]}{1+x}\) từ (1)=> \(\frac{1+kx+x}{x+1}\ge\left(1+x\right)^k\ge\left(1+kx\right)\)

\(\Rightarrow\frac{\left(1+kx\right)+x}{x+1}\ge\left(1+kx\right)\Leftrightarrow\left(1+kx\right)+x\ge\left(1+kx\right)+x+kx^2\)(3)

\(\left(3\right)\Leftrightarrow\left[\left(1+kx\right)+x\right]-\left[\left(1+kx\right)+x\right]\ge kx^2\)\(\Leftrightarrow0\ge kx^2\) (***)

{(***) đúng chỉ khi x=0 ta đang xét x khác 0} vậy (***) sai => (*) sai

ĐIều giả sử sai--> không tồn tại giá trị (k+1) --> làm BĐT đổi chiều:

=> đpcm


Các câu hỏi tương tự
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Jack Viet
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Giao nguyen
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Nguyễn Nam Khánh
Xem chi tiết