Trong mặt phẳng oxy ,parabol (P) y=ax^2 (a khác 0 ) đi qua điểm M (-m;2m) với m >0 .Trong cá điểm sau , điểm nào không thuộc đồ thị (P) ?
A,(-2m;8m).
B,(m;2m).
C,(2m;4m).
D,(0;0).
Trong mặt phẳng oxy ,parabol (P) y=ax^2 (a khác 0 ) đi qua điểm M (-m;2m) với m >0 .Trong các điểm sau , điểm nào không thuộc đồ thị (P) ?
A,(-2m;8m).
B,(m;2m).
C,(2m;4m).
D,(0;0).
a) Tìm các giá trị của a và b để đường thẳng (d): y=ax+b đi qua hai điểm M(1;5) và N(2;8).
b) Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2x – a + 1 và parabol (P): y = \(\dfrac{1}{2}x^2\).
1.Tìm a để đường thẳng a đi qua điểm A (-1;3)
2.Tìm a để (d) cắt (P) tại hai điểm phân biệt có tọa độ (\(x_1;x_2\)) và (\(x_2;y_2\)) thỏa mãn điều kiện \(x_1x_2\left(y_1+y_2\right)+48=0\)
a: Theo đề, ta có:
\(\left\{{}\begin{matrix}a+b=5\\2a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\)
b:
1: Thay x=-1 và y=3 vào (d), ta được:
\(2\cdot\left(-1\right)-a+1=3\)
=>-a-1=3
=>-a=4
hay a=-4
Trong mặt phẳng tọa độ Oxy, cho Parabol(P): y=x2 và đường thẳng (d): y=2(m+1)x-m2-4 (1), (m là tham số)
a) Tìm m để đường thẳng (d) đi qua A(0;-5)
b) Với giá trị nào của m để đường thẳng (d) cắt parabol (P) tại 2 điểm phân biệt có hoành độ x1; x2 thỏa mãn điều kiện: (2x1-1)(x22-2mx2+m2+3)=21
a: Thay x=0 và y=-5 vào (d), ta được:
2(m+1)*0-m^2-4=-5
=>m^2+4=5
=>m=1 hoặc m=-1
b:
PTHĐGĐ là;
x^2-2(m+1)x+m^2+4=0
Δ=(2m+2)^2-4(m^2+4)
=4m^2+8m+4-4m^2-16=8m-12
Để PT có hai nghiệm phân biệt thì 8m-12>0
=>m>3/2
x1+x2=2m+2; x1x2=m^2+4
(2x1-1)(x2^2-2m*x2+m^2+3)=21
=>(2x1-1)[x2^2-x2(2m+2-2)+m^2+4-1]=21
=>(2x1-1)[x2^2+2x2-x2(x1+x2)+x1x2-1]=21
=>(2x1-1)(x2^2+2x2-x1x2-x2^2+x1x2-1]=21
=>(2x1-1)(2x2-1)=21
=>4x1x2-2(x1+x2)+1=21
=>4(m^2+4)-2(2m+2)+1=21
=>4m^2+16-4m-4-20=0
=>4m^2-4m-8=0
=>(m-2)(m+1)=0
=>m=2(nhận) hoặc m=-1(loại)
2. Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=X’ và đường thẳng (d):
y=3x+m² -1
a) Tìm m để đường thẳng (d) đi qua điểm A(-1: 5).
b) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x,,, thỏa
mãn |x|+2|x|=3.
trong mặt phẳng Oxy, cho parabol (P) y =ax2 a khác 0 và đường thẳng d : y = x-1
a) tìm a biết P tiếp xúc d
ta có pt hoảnh độ giao điểm: \(ax^2=x-1\Leftrightarrow ax^2-x+1=0\)
P tiếp xúc d <=> PT trên có nghiệm kép <=> \(\Delta=0\Leftrightarrow1-4a=0\Leftrightarrow a=\frac{1}{4}\)
trên mặt phẳng tọa độ Oxy cho parabol y=x^2 (P) và đường thẳng y=mx+3-m .
a)chứng minh đường thẳng d luôn đi qua điểm M(1,3)
b)tìm m đề đường thẳng (d)cắt parabol tại hai điểm phân biệt nằm về 2 phía của điểm M
a: Thay x=1 và y=3 vào (d), ta được:
m+3-m=3
=>3=3(luôn đúng)
b: PTHĐGĐ là:
x^2-mx-3+m=0
=>x^2-mx+m-3=0
Để (d) cắt (P) tại hai điểm phân biệt thì m-3<0
=>m<3
Trong mặt phẳng tọa độ Oxy, cho parabol: \(\left(P\right):y=x^2\) và đường thẳng (d): y=\(3x+m^2-1\). Xác định m để (d) và (P) cùng đi qua điểm có tung độ bằng 1
Thay y=1 vào (P), ta được:
\(x^2=1\)
=>x=1 hoặc x=-1
Thay x=1 và y=1 vào (d), ta được:
\(m^2-1+3=1\)(vô lý)
Thay x=-1 và y=1 vào (d), ta được:
\(m^2-1-3=1\)
\(\Leftrightarrow m^2=5\)
hay \(m\in\left\{\sqrt{5};-\sqrt{5}\right\}\)
tham khảo
Thay y=1 vào (P), ta được:
\(x^2=1\)
=>x=1 hoặc x=-1
Thay x=1 và y=1 vào (d), ta được:
\(m^2-1+3=1\)(vô lý)
Thay x=-1 và y=1 vào (d), ta được:
\(m^2-1-3=1\)
\(\Leftrightarrow m^2=5\)
hay \(m\in\left\{\sqrt{5};-\sqrt{5}\right\}\)
Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = 1/2x2
a) Vẽ đồ thị parabol (P).
a) Tìm a và b để đường thẳng (d): y = a.x + b đi qua điểm (0;-1) và tiếp xúc với (P).
b) Để (d) đi qua (0;-1) thì
Thay x=0 và y=-1 vào y=ax+b, ta được:
\(a\cdot0+b=-1\)
\(\Leftrightarrow b=-1\)
Vậy: (d): y=ax-1
Phương trình hoành độ giao điểm của (P) và (d) là:
\(\dfrac{1}{2}x^2=ax-1\)
\(\Leftrightarrow\dfrac{1}{2}x^2-ax+1=0\)
\(\Delta=a^2-4\cdot\dfrac{1}{2}\cdot1=a^2-2\)
Để (d) và (P) tiếp xúc với nhau thì \(\Delta=0\)
\(\Leftrightarrow a^2=2\)
hay \(a\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
Vậy: Để (d) tiếp xúc với (P) và (d) đi qua (0;-1) thì \(\left(a,b\right)=\left\{\left(\sqrt{2};-1\right);\left(-\sqrt{2};-1\right)\right\}\)
Trong mặt phẳng tọa độ Oxy cho điểm M(0;2), parabol (P) \(y=\frac{x^2}{4}\), đường thẳng (d) ax+by=-2. Biết (d) đi qua M.
a) Chứng minh rằng khi a thay đổi thì (d) luôn cắt (P) tại hai điểm phân biệt A và B.
b) Xác định a để AB có độ dài ngắn nhất.
\(a,M\in\left(d\right)\Rightarrow a.0+b.2=-2\)
\(\Rightarrow b=-1\)
\(\Rightarrow\left(d\right)ax-y=-2\)
\(\Rightarrow\left(d\right)y=ax+2\)
Hoành độ giao điểm của (d) và (P) là nghiệm của phương trình
\(\frac{x^2}{4}=ax+2\)
\(\Leftrightarrow x^2-4ax-8=0\)(1)
Có \(\Delta'=4a^2+8>0\)
Nên pt (1) luôn có 2 nghiệm phân biệt
=> (d) luôn cắt (P) tại 2 điểm phân biệt A và B
b, Gọi 2 điểm A và B có tọa độ là \(A\left(x_1;y_1\right);B\left(x_2;y_2\right)\)
Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=4a\\x_1x_2=-8\end{cases}}\)
Vì \(A;B\in\left(P\right)\Rightarrow\hept{\begin{cases}y_1=\frac{x_1^2}{4}\\y_2=\frac{x_2^2}{4}\end{cases}}\)
Ta có \(AB=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}\)
\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2+\left(y_1+y_2\right)^2-4y_1y_2}\)
\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2+\left(\frac{x_1^2+x_2^2}{4}\right)^2-4.\frac{x_1^2x_2^2}{4.4}}\)
\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2+\frac{\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2}{4}-\frac{x_1^2x_2^2}{4}}\)
\(=\sqrt{16a^2+32+\frac{\left(16a^2+16\right)^2}{4}-\frac{64}{4}}\)
\(\ge\sqrt{16.0+32+\frac{\left(16.0+16\right)^2}{4}-\frac{64}{4}}=4\sqrt{5}\)
Dấu "=" <=> a = 0