a: Thay x=1 và y=3 vào (d), ta được:
m+3-m=3
=>3=3(luôn đúng)
b: PTHĐGĐ là:
x^2-mx-3+m=0
=>x^2-mx+m-3=0
Để (d) cắt (P) tại hai điểm phân biệt thì m-3<0
=>m<3
a: Thay x=1 và y=3 vào (d), ta được:
m+3-m=3
=>3=3(luôn đúng)
b: PTHĐGĐ là:
x^2-mx-3+m=0
=>x^2-mx+m-3=0
Để (d) cắt (P) tại hai điểm phân biệt thì m-3<0
=>m<3
Trong mặt phẳng tọa độ oxy, đường thẳng (d) y=2x-m+3 và Parabol (P) y=x2.
a) Tìm m để đường thẳng (d) đi qua A(1;0)
b) Tìm m để dường thẳng (d) và Parabol (P) cắt nhau tại hai điểm phân biệt có hoành độ lần lượt là x1, x2 thỏa mãn x12 -2x2 +x1.x2 = -12
Cho Parabol (P): y=x^2 và đường thẳng (d): y=2x-m^2+9
a. Tìm toạ độ các giao điểm của Parabol (P) và đường thẳng (d) khi m = 1.
b. Tìm m để đường thẳng (d) cắt Parabol (P) tại hai điểm nằm về hai phía của trục tung.
Giải chi tiết hộ mình nha
Trên mặt phẳng tọa độ Oxy cho parabol (P): y=x2 và đường thẳng (d): y=2mx+1 (m là tham số)
1) Chứng minh rằng với mọi m thì đường thẳng (d) và parabol (P) cắt nhau tại 2 điểm phân biệt.
2) Gọi giao điểm của đường thẳng (d) và parabol (P) là A và B. Chứng minh tam giác OAB vuông.
trong mp tọa độ Oxy cho đường thẳng (d):y=mx+5 . Chứng minh đường thẳng (d) luôn đi qua điểm A(0;5)với mọi giá trị của m
Cho parabol (P) \(y=\dfrac{1}{2}x^2\) và điểm A, B thuộc (P) có hoành độ lần lượt là: -1, 2. Đường thẳng (d) phương trình y=mx+n
a) Tìm tọa độ điểm A, B. Tìm m, n biết (d) đi qua A và B.
b) Tính độ dài đường cao OH của tam giác OAB (điểm O là gốc tọa độ)
Cho Parabol y=x2 (P), và đường thẳn: y=2(1-m)x+3 (d), với m là tham số
a) Chứng minh với mọi giá trị của m, parabol (P) và đường thẳng (d) luôn cắt nhau tại hai điểm phân biệt
b) Tìm các giá trị của m, để (P) và (d) cắt nhau tại điểm có tung độ y=1
Cho Parabol (P) có đỉnh ở gốc tọa độ và đi qua điểm A(-3;3).
1. Viết phương trình của Parabol (P).
2. Viết phương trình đường thẳng (d) song song với đường thẳng (d’): y = x – 2017 và đi qua điểm B(0;1-n). Xác định n sao cho đường thẳng (d) cắt Parabol (P) tại hai điểm phân biệt có hoành độ x1;x2 thỏa mãn: |x1 - x2| = \(\sqrt{5}\)
Trên mặt phẳng tọa độ xOy, cho đường thẳng (d): y = x-3 và parabol (P) : y= -2x2.
a) Vẽ (d) trên cùng một mặt phẳng tọa độ xOy
b) Tìm tọa độ của giao điểm M và N của (d) và (P)
c) Tính diện tích tam giác OMN với O là gốc tọa độ
trên mặt phẳng tọa độ Oxy cho đường thẳng (d):y=-x+2 và Parabol (P):y=x² a)vẽ đồ thị của (d) và (P) trên cùng 1 hệ trục tọa độ b)Tìm tọa độ giao điểm của (P) và (d) (bằng phép tính) c) gọi A và B là 2 giao điểm của (d ) và (P). Tính diện tích tam giác OAB