Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
Lệ Nguyễn
Xem chi tiết
Nguyễn Thị Thương Hoài
16 tháng 12 2023 lúc 14:32

A = 20102011 - 20102010

A = 20102010 .( 2010 - 1)

A = 20102010.2009

2009 ⋮ 2009 ⇒ A = 20102010.2009 ⋮ 2009

*•.¸♡ρυи๛
Xem chi tiết
HT2k02
8 tháng 4 2021 lúc 22:41

Nó có chia hết à ??? 

Ta thấy 2009 chia 2010 dư  -1 

=> 2009 ^ 2008 chia 2010 dư 1 (1)

Lại có  2011 chia 2010 dư 1

=> 2011^2010 chia 2020 dư 1 (2)

Từ (1)(2) => 2009^2008-2011^2020 chia 2010 dư 2 (sai )

Trang Huyen
9 tháng 4 2021 lúc 17:44

2009^2008+2011^2010 chia hết cho 2010 2009^2008+2011^2010

=2009^2008+2011^2010

=2009^2008+2011^2010+1-1

=(2009^2008+ 1) + (2011^2010– 1)

= (2009 + 1)(2009^2007- …) + (2011 – 1)(2011^2009 + …)

= 2010(2009^2008 - …) + 2010(2011^2009+ …) chia hết cho 2010  

Trang Huyen
9 tháng 4 2021 lúc 17:46

2009^2008+2011^2010 chia hết cho 2010 2009^2008+2011^2010

=2009^2008+2011^2010

=2009^2008+2011^2010+1-1

=(2009^2008+ 1) + (2011^2010– 1)

= (2009 + 1)(2009^2007- …) + (2011 – 1)(2011^2009 + …)

= 2010(2009^2008 - …) + 2010(2011^2009+ …) chia hết cho 2010  

Ngô Gia Bảo Ngọc
Xem chi tiết
TFboys_Lê Phương Thảo
12 tháng 12 2016 lúc 11:16

Chứng minh rằng: 
20092008+20112010 chia hết cho 2010
20092008 + 1) + (20112010 – 1)
= (2009 + 1)(20092007 - …) + (2011 – 1)(20112009 + …)
= 2010(20112009 + …) chia hết cho 2010

Nhóm IOI
Xem chi tiết
tiến dũng
5 tháng 3 2018 lúc 21:50

A=(2009+2009^2)+(2009^3+2009^4)+...+(2009^9+2009^10)

A=[2009.(1+2009)]+[2009^3.(1+2009)]+....+[2009^9.(1+2009)]

A=2009.2010+2009^3.2010+...+2009^9.2010

A=2010(2009+2009^3+2009^5+......+2009^9)  chia het cho 2010

Ngo Tung Lam
5 tháng 3 2018 lúc 21:54

Ta có :

\(A=2009+2009^2+2009^3+2009^4+....+2009^{10}\)

Tổng A có số số hạng là :

( 10 - 1 ) : 1 + 1 = 10 ( số hạng )

Vì \(10⋮2\)nên khi ta nhóm 2 số liên tiếp lại thành một căp thì không thừa số nào cả 

\(\Rightarrow A=\left(2009+2009^2\right)+\left(2009^3+2009^4\right)+....+\left(2009^9+2009^{10}\right)\)

\(\Rightarrow A=2009.\left(1+2009\right)+2009^3.\left(1+2009\right)+....+2009^9.\left(1+2009\right)\)

\(\Rightarrow A=2009.2010+2009^3.2010+....+2009^9.2010\)

\(\Rightarrow A=2010.\left(2009+2009^3+....+2009^9\right)\)

Vì \(2009+2009^3+....+2009^9\inℤ\)nên \(2010.\left(2009+2009^3+....+2009^9\right)\inℤ\)

Vì \(2010⋮2010\)nên \(A⋮2010\)

Vậy \(A=2009+2009^2+2009^3+....+2009^{10}⋮2010\left(ĐPCM\right)\)

Lê Hoàng Quân
Xem chi tiết
Pham Van Hung
15 tháng 12 2018 lúc 18:46

\(2009^{2011}+2011^{2009}=\left(2009^{2011}+1\right)+\left(2011^{2009}-1\right)\)

Ta có: \(a^n+b^n⋮\left(a+b\right)\) với n là số lẻ.

\(a^n-b^n⋮\left(a-b\right)\forall n\inℕ^∗\)

Nên \(2009^{2011}+1⋮\left(2009+1\right),2011^{2009}-1⋮\left(2011-1\right)\)

Vậy \(2009^{2011}+1+2011^{2009}-1⋮2010\Rightarrow2009^{2011}+2011^{2009}⋮2010\)

Lê Hoàng Quân
15 tháng 12 2018 lúc 18:49

Tại sao an+bn chia hết a+b

Pham Van Hung
15 tháng 12 2018 lúc 19:03

Đấy là công thức rồi bạn

Lê Hoàng Quân
Xem chi tiết
Nguyễn Ngọc Phương Thảo
Xem chi tiết
exoksuho
16 tháng 4 2017 lúc 21:06

From: exoplanet

To: Nguyễn Ngọc Phương Thảo

\(2009^{2008}+2011^{2010}=\left(2009^{2008}+1\right)+\left(2011^{2010}-1\right)\)

\(=\left(2009+1\right)\left(2009^{2007}+a\right)+\left(2011-1\right)\left(2011^{2009}-b\right)\)

le vi dai
Xem chi tiết
Vo Quang Huy
16 tháng 10 2017 lúc 19:05

undefined

Đinh Quốc Anh
26 tháng 10 2017 lúc 20:05

undefined

Phan Thị Thúy Quỳnh
16 tháng 12 2017 lúc 16:22

Hỏi đáp Toán