Cho \(0\le a;b;c\le3\) thỏa a+b+c=6. Tìm min và max của Q=a^2+b^2+c^2+abc
Cho 0≤a≤1; 0 ≤ b≤1; 0≤ c≤ 1 và a+ b +c =2. Tìm già trị lớn nhất của biểu thức A= a2 +b2 +c2
\(0\le a\le1\Rightarrow a\left(1-a\right)\ge0\Rightarrow a^2\le a\)
Tương tự: \(b\left(1-b\right)\ge0\Rightarrow b^2\le b\) ; \(c\left(1-c\right)\ge0\Rightarrow c^2\le c\)
Cộng vế với vế:
\(a^2+b^2+c^2\le a+b+c=2\)
\(A_{max}=2\) khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và hoán vị
Cho các số thực: 0\(\le\)a\(\le\)1; 0\(\le\)b\(\le\)1; 0\(\le\)c\(\le\)1 thoả mãn:
\(a\sqrt{1-b^2}+b\sqrt{1-c^2}+c\sqrt{1-a^2}=\dfrac{3}{2}\)
Chứng minh: \(a^2+b^2+c^2=\dfrac{3}{2}\)
Áp dụng BĐT cosi:
\(a\sqrt{1-b^2}=\sqrt{a^2\left(1-b^2\right)}\le\dfrac{a^2+1-b^2}{2}\)
Tương tự cx có: \(b\sqrt{1-c^2}\le\dfrac{b^2+1-c^2}{2}\)
\(c\sqrt{1-a^2}\le\dfrac{c^2+1-a^2}{2}\)
Cộng vế với vế \(\Rightarrow VT\le\dfrac{3}{2}\)
Dấu = xảy ra <=> \(\left\{{}\begin{matrix}a^2=1-b^2\\b^2=1-c^2\\c^2=1-a^2\end{matrix}\right.\) \(\Leftrightarrow a^2+b^2+c^2=3-\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow a^2+b^2+c^2=\dfrac{3}{2}\) (đpcm)
Cho 0 \(\le\)a,b \(\le\)1.CMR
0\(\le\)\(\dfrac{a}{1+b}\)+\(\dfrac{b}{1+a}\)\(\le\)1
\(a;b\ge0\Rightarrow\dfrac{a}{1+b}+\dfrac{b}{1+a}\ge0\)
Mặt khác: \(0\le a;b\le1\Rightarrow1+a\ge b+a\Rightarrow\dfrac{b}{1+a}\le\dfrac{b}{a+b}\)
Tương tự ta có: \(\dfrac{a}{1+b}\le\dfrac{a}{a+b}\)
Cộng vế: \(\dfrac{a}{1+b}+\dfrac{b}{1+a}\le\dfrac{a}{a+b}+\dfrac{b}{a+b}=1\) (đpcm)
Bài 1: a) Cho a+b+c=6 và ab+bc+ac=9. Chứng minh rằng 0<a<4; 0<b<4; 0<c<4.
b) Cho a+b+c=2 và a2+b2+c2=2. Chứng minh rằng: \(0\le a\le\frac{4}{3};\)\(0\le b\le\frac{4}{3};\)\(0\le c\le\frac{4}{3}.\)
Từ a+b+c=6 \(\Rightarrow\)a+b=6-c
Ta có: ab+bc+ac=9\(\Leftrightarrow\)ab+c(a+b)=9
\(\Leftrightarrow\)ab=9-c(a+b)
Mà a+b=6-c (cmt)
\(\Rightarrow\)ab=9-c(6-c)
\(\Rightarrow\)ab=9-6c+c2
Ta có: (b-a)2\(\ge\)0 \(\forall\)b, c
\(\Rightarrow\)b2+a2-2ab\(\ge\)0
\(\Rightarrow\)(b+a)2-4ab\(\ge\)0
\(\Rightarrow\)(a+b)2\(\ge\)4ab
Mà a+b=6-c (cmt)
ab= 9-6c+c2 (cmt)
\(\Rightarrow\)(6-c)2\(\ge\)4(9-6c+c2)
\(\Rightarrow\)36+c2-12c\(\ge\)36-24c+4c2
\(\Rightarrow\)36+c2-12c-36+24c-4c2\(\ge\)0
\(\Rightarrow\)-3c2+12c\(\ge\)0
\(\Rightarrow\)3c2-12c\(\le\)0
\(\Rightarrow\)3c(c-4)\(\le\)0
\(\Rightarrow\)c(c-4)\(\le\)0
\(\Rightarrow\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}}\)hoặc\(\hept{\begin{cases}c\le0\\c-4\ge0\end{cases}}\)
*\(\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}c\ge0\\c\le4\end{cases}\Leftrightarrow}0\le c\le4}\)
*
Cho \(0\le a\le b\le1\), chứng minh \(0\le ab^2-a^2b\le\frac{1}{4}\)
Cho 0 ≤ a ≤ 2 , 0 ≤ b ≤ 2 , 0 ≤ c ≤ 2 và a + b + c = 3 . Chứng minh rằng :
3 ≤ a3 + b3 + c3 ≤ 9
Làm nhanh nhé ! mình ko có nhiều thoài gian nữa đâu
Cho a+b+c=2 và 2 +b2+c2=2. Chứng minh: \(0\le a\le\frac{4}{3};0\le b\le\frac{4}{3};0\le c\le\frac{4}{3}\)
Cho 3 số 0≤a≤b≤c≤1 chứng minh rằng a/bc+1=b/ac+1=c/ab+1≤2
Bạn tham khảo ở đây nhé
https://olm.vn/hoi-dap/detail/49527613309.html
cho a,b thỏa mãn :0 ≤ a,b ≤1. Chứng minh:\(\left(a^2+ab-3a-b+2\right)\left(b^2+ab-a-b\right)\) ≤ 0
Lời giải:
Ta có:
\((a^2+ab-3a-b+2)(b^2+ab-a-b)\)
\(=[a(a+b-2)-a-b+2][b(b+a)-(a+b)]\)
\(=[a(a+b-2)-(a+b-2)][b(b+a)-(a+b)]\)
\(=(a+b-2)(a-1)(b+a)(b-1)\)
Vì \(0\leq a,b\leq \Rightarrow \left\{\begin{matrix} a+b-2\leq 0\\ a-1\leq 0\\ b+a\geq 0\\ b-1\leq 0\end{matrix}\right.\)
\(\Rightarrow (a^2+ab-3a-b+2)(b^2+ab-a-b)=(a+b-2)(a-1)(b+a)(b-1)\leq 0\)
Ta có đpcm.
cho 3 số a,b,c sao cho \(0\le a\le2;0\le b\le2;0\le c\le2\)
và a+b+c=3. chứng minh rằng \(a^2+b^2+c^2\le5\)