Cho ba số thực a,b,c thỏa mãn a\(\ge1;b\ge4;c\ge9\)
Tìm giá trị lớn nhất của biểu thức:P=\(\frac{bc\sqrt{a-1}+ca\sqrt{b-4}+ab\sqrt{c-9}}{abc}\)
Cho ba số thực dương thỏa mãn abc=1. CMR
\(\dfrac{1}{a^2+a+1}+\dfrac{1}{b^2+b+1}+\dfrac{1}{c^2+c+1}\ge1\)
Đặt \(a=\dfrac{yz}{x^2};b=\dfrac{zx}{y^2};c=\dfrac{xy}{z^2}\)
Áp dụng BĐT BSC:
\(\dfrac{1}{a^2+a+1}+\dfrac{1}{b^2+b+1}+\dfrac{1}{c^2+c+1}\)
\(=\dfrac{x^4}{x^4+x^2yz+y^2z^2}+\dfrac{y^4}{y^4+y^2zx+z^2x^2}+\dfrac{z^4}{z^4+z^2xy+x^2y^2}\)
\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2+xyz\left(x+y+z\right)}\)
Ta cần chứng minh:
\(\dfrac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2+xyz\left(x+y+z\right)}\ge1\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2\ge x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2+xyz\left(x+y+z\right)\)
\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2-xy.yz-yz.zx-zx.xy\ge0\)
\(\Leftrightarrow\left(xy-yz\right)^2+\left(yz-zx\right)^2+\left(zx-xy\right)^2\ge0,\forall x,y,z\)
\(\Rightarrow dpcm\)
Đẳng thức xảy ra khi \(a=b=c=1\)
cho các số thực a,b,c thỏa mãn \(a+2b+3c\ge4\) và \(a-b-3c\ge1\).CMR
\(a+b+c\ge3\)
Cho các số thực a,b,c thỏa mãn điều kiện \(a\ge1,b\ge1,c\ge1\)
Chứng minh rằng : \(\dfrac{1}{2a-1}+\dfrac{1}{2b-1}+\dfrac{1}{2c-1}+\dfrac{4ab}{ab+1}+\dfrac{4bc}{bc+1}+\dfrac{4ac}{ac+1}\ge9\)
\(VT\ge\dfrac{1}{\left(a^2+1\right)-1}+\dfrac{1}{\left(b^2+1\right)-1}+\dfrac{1}{\left(c^2+1\right)-1}+4-\dfrac{4}{ab+1}+4-\dfrac{4}{bc+1}+4-\dfrac{4}{ca+1}\)
\(VT\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}-\dfrac{4}{ab+1}-\dfrac{4}{bc+1}-\dfrac{4}{ca+1}+12\)
Mặt khác \(a;b;c\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab+1\ge a+b\) (và tương tự...)
\(\Rightarrow VT\ge\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}-\dfrac{4}{a+b}-\dfrac{4}{b+c}-\dfrac{4}{c+a}+12\)
\(VT\ge\dfrac{4}{\left(a+b\right)^2}+\dfrac{4}{\left(b+c\right)^2}+\dfrac{4}{\left(c+a\right)^2}-\dfrac{4}{a+b}-\dfrac{4}{b+c}-\dfrac{4}{c+a}+1+1+1+9\)
\(VT\ge\left(\dfrac{2}{a+b}-1\right)^2+\left(\dfrac{2}{b+c}-1\right)^2+\left(\dfrac{2}{c+a}-1\right)^2+9\ge9\)
cho a,b,c là các số thực dương thỏa mãn a+b+c+1=4abc.CMR
\(\dfrac{a^2b}{b+2c}+\dfrac{b^2c}{c+2a}+\dfrac{c^2a}{a+2b}\ge1\)
cho a,b,c là các số thực dương thỏa mãn a+b+c+1=4abc.
\(\dfrac{a^2b}{b+2c}+\dfrac{b^2c}{c+2a}+\dfrac{c^2a}{a+2b}\ge1\)
cho a,b,c là các số thực dương thỏa mãn \(a+b+c+1=4abc\).CMR
\(\dfrac{a^2b}{b+2c}+\dfrac{b^2c}{c+2a}+\dfrac{c^2a}{a+2b}\ge1\)
Cho a, b là số thực dương thỏa mãn a + b \(\ge1\)
Tìm GTNN: A = \(\dfrac{8a^2+b}{4a}+b^2\)
Bạn tham khảo:
cho ba số thực a,b,c thỏa mãn \(a\ge1:b\ge4;c\ge9\)
Tìm giá trị lớn nhất của biếu thức
\(P=\frac{bc\sqrt{a-1}+ca\sqrt{b-4}+ab\sqrt{c-9}}{abc}\)
Xét a=1,b=4,c=9 thì P=0
Xét \(a>1,b>4,c>9\)
Áp dụng BĐT AM-GM ta có:
\(P=\frac{bc.\sqrt{a-1}.1+\frac{ca}{2}.\sqrt{b-4}.2+\frac{ab}{3}.\sqrt{c-9}.3}{abc}\)
\(\le\frac{bc.\frac{a-1+1}{2}+\frac{ca}{2}.\frac{b-4+4}{2}+\frac{ab}{3}.\frac{c-9+9}{2}}{abc}\)
\(=\frac{\frac{abc}{2}+\frac{abc}{4}+\frac{abc}{6}}{abc}=\frac{\frac{11}{12}abc}{abc}=\frac{11}{12}\)
Nên GTLN của P là \(\frac{11}{12}\) đạt được khi \(\hept{\begin{cases}\sqrt{a-1}=1\\\sqrt{b-4}=2\\\sqrt{c-9}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}a-1=1\\b-4=4\\c-9=9\end{cases}\Leftrightarrow}\hept{\begin{cases}a=2\\b=8\\c=18\end{cases}}\)
\(P=\frac{bc\sqrt{a-1}+ca\sqrt{b-4}+ab\sqrt{c-9}}{abc}=\frac{\sqrt{a-1}}{a}+\frac{\sqrt{b-4}}{b}+\frac{\sqrt{c-9}}{c}\)
Vì \(a\ge1;b\ge4;c\ge9\). Áp dụng BĐT Cosi cho các số dương ta được:
\(\sqrt{a-1}=1\cdot\sqrt{a-1}\le\frac{1+a-1}{2}=\frac{a}{2}\). Dấu "=" xảy ra \(\Leftrightarrow\sqrt{a-1}=1\Leftrightarrow a=2\)
\(\sqrt{b-4}=2\cdot\sqrt{b-4}\le\frac{4+b-4}{2}=\frac{b}{2}\). Dấu "=" xảy ra \(\Leftrightarrow\sqrt{b-4}=2\Leftrightarrow b=8\)
\(\sqrt{c-9}=3\cdot\sqrt{c-9}\le\frac{9+c-9}{2}=\frac{c}{2}\). Dấu "=" xảy ra \(\Leftrightarrow\sqrt{c-9}=3\Leftrightarrow c=18\)
\(\Rightarrow P=\frac{\sqrt{a-1}}{a}+\frac{\sqrt{b-4}}{b}+\frac{\sqrt{c-9}}{c}\le\frac{a}{2a}+\frac{b}{2b}+\frac{c}{2c}=\frac{3}{2}\)
Vậy GTLN của P\(=\frac{3}{2}\Leftrightarrow a=2;b=8;c=18\)
Cho a,b,c là các số thực thỏa mãn \(a\ge1,b\ge2,c\ge3\) và a+b+c=9.
Tìm GTNN của biểu thức \(P=\sqrt{a-1}+\sqrt{b-2}+\sqrt{c-3}\)
Ta đặt:
\(\left\{{}\begin{matrix}x=a-1\\y=b-2\\z=c-3\end{matrix}\right.\)
\(\Rightarrow x+y+z=3\) và \(x,y,z\ge0\) (*)
Biểu thứ P trở thành:
\(P=\sqrt{x}+\sqrt{y}+\sqrt{z}\)
Từ (*) dễ thấy:
\(\left\{{}\begin{matrix}0\le x\le3\\0\le y\le3\\0\le z\le3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0\le x\le\sqrt{3x}\\0\le y\le\sqrt{3y}\\0\le z\le\sqrt{3z}\end{matrix}\right.\)
Do đó:
\(P\ge\dfrac{x+y+z}{\sqrt{3}}=\sqrt{3}\)
Dầu "=" xảy ra khi \(\left(a;b;c\right)=\left(3;0;0\right)=\left(0;3;0\right)=\left(0;0;3\right)\)
Cho ba số thực dương \(a,b,c\) thỏa mãn \(a+b+c=3\)
Chứng minh:
\(\frac{1}{2+a^2b}+\frac{1}{2+b^2c}+\frac{1}{2+c^2a}\ge1\)