Tìm cặp số \(\left(a;b\right)\) thoả mãn điều kiện \(\sqrt{a-2}b^2=b-\sqrt{a-2}\) sao cho a đạt giá trị lớn nhất
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)
Tìm các cặp số thực a và b sao cho mỗi cặp vecto sau bằng nhau:
a) \(\overrightarrow u = \left( {2a - 1; - 3} \right)\) và \(\overrightarrow v = \left( {3;4b + 1} \right)\)
b) \(\overrightarrow x = \left( {a + b; - 2a + 3b} \right)\) và \(\overrightarrow y = \left( {2a - 3;4b} \right)\)
a) Để \(\overrightarrow u = \overrightarrow v \Leftrightarrow \left\{ \begin{array}{l}2a - 1 = 3\\ - 3 = 4b + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = - 1\end{array} \right.\)
Vậy \(\left\{ \begin{array}{l}a = 2\\b = - 1\end{array} \right.\) thì \(\overrightarrow u = \overrightarrow v \)
b) \(\overrightarrow x = \overrightarrow y \Leftrightarrow \left\{ \begin{array}{l}a + b = 2a - 3\\ - 2a + 3b = 4b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 2\end{array} \right.\)
Vậy \(\left\{ \begin{array}{l}a = 1\\b = - 2\end{array} \right.\) thì \(\overrightarrow x = \overrightarrow y \)
Tìm tất cả các cặp số nguyên dương (a;b) sao cho \(\dfrac{ab\left(a+b\right)}{ab+2}\) là số nguyên
Tìm tất cả các cặp số nguyên dương (a;b) sao cho \(\dfrac{ab\left(a+b\right)}{ab+2}\)
đề có phải là:Tìm tất cả các cặp số nguyên dương (a;b) sao cho\(\dfrac{ab\left(a+b\right)}{ab+2}\) là số nguyên không bạn
Tìm tất cả các cặp số tự nhiên a lớn hơn sao cho: \(\left(a-b\right)\times\left(a+b\right)=121\)
tìm cặp số nguyên dương a, b\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)=\frac{3}{2}\)
Phan cả PHát - stupid lv max
Try a=3;b=8 or a=4;b=5 or a=5;b=4
Vì \(1+\frac{1}{a}\ge2\forall a>0\) (1)
\(1+\frac{1}{b}\ge2\forall b>0\)(2)
Từ (1) và (2)
\(\Rightarrow\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\ge2.2=4\)(Trái với gt đề bài)
Suy ra không có cặp số nguyên dương a,b nào thỏa mãn
Tìm cặp thứ tự (a,b) sao cho các số thực \(\left(a+bi\right)^{2002}=a-bi\)
Đặt \(z=a+bi\Rightarrow\overline{z}=a-bi,\left|z\right|=\sqrt{a^2+b^2}\) Hệ thức đã cho trở thàng \(z^{2002}=\overline{z}\)
\(\left|z\right|^{2002}=\left|z^{2002}\right|=\left|\overline{z}\right|=\left|z\right|\Rightarrow\left(\left|z\right|^{2001}-1\right)=0\)
Do đó :
\(\left|z\right|=0\) tức là (a,b) =(0,0) hoặc \(\left|z\right|=1\). Trong trường hợp \(\left|z\right|=1\), ta có :
\(z^{2002}=\overline{z}\Rightarrow z^{2002}=z.\overline{z}=\left|z\right|^2=1\)
Phương trình : \(z^{2002}=1\) có 2003 nghiệm phân biệt \(\Rightarrow\) có 2004 cặp thứ tự theo yêu cầu.
Tìm tất cả các cặp số nguyên dương (a; b) sao cho \(\left(a+b^2\right)\)chia hết cho \(\left(a+b^2\right)\).
Đề đúng : tìm tất cả các số nguyên dương \(a,b\) sao cho \(a+b^2\) chia hết cho \(a^2b-1\)
Có thể vào đây tham khảo\(\rightarrow\) Các bài toán và vấn đề về Số học
de the nao lam nhu vay
Tra loi: tat ca cac so nguyen duong a,b deu thoa man
tìm tất cả các cặp số tự nhiên ( a ; b ) thỏa mãn : \(\left(3^a-1\right)\left(3^a-2\right)\left(3^a-3\right)\left(3^a-4\right)\left(3^a-5\right)\left(3^a-6\right)=2016^b+20159\)
giúp mik nhé mik tick cho thank
vì (3^a-1).......(3^a-6) là 6 số tự nhiên liên tiếp nên (3^a-1)......(3^a-6) :6
=> (3^a-1)......(3^a-6) chẵn
mà 20159 lẻ
nên 2016 lẻ
=> b=0
ta có : (3^a-1) .....(3^a-6) = 1+ 20159
=> (3^a-1) ....(3^a-6)= 20160 =8:7;6;5;4;3
=> 3^a-1= 8
3^a=9
a=2
vậy ..............
Tìm tất cả các cặp (x;y) thỏa mãn A là số nguyên với :
A = \(\frac{3x.\left(x+y\right)-6.\left(x+y\right)+1}{x-2}\)
bài này sẽ giải nếu x,y là số nguyên
ĐKXĐ: x≠2
A=\(\dfrac{3\left(x++y\right)\left(x-2\right)+1}{x-2}\)
A=\(\dfrac{3\left(x+y\right)\left(x-2\right)}{x-2}+\dfrac{1}{x-2}\)
A=3(x+y)+\(\dfrac{1}{x-2}\)
Vì x;y; A là số nguyên nên \(\dfrac{1}{x-2}\) cũng là số nguyên
hay x-2⋮1
hay x-2ϵƯ(1)=(-1;1)
suy ra x=1;3
tự tìm y