Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dung Nguyễn
Xem chi tiết
Trà My Nguyễn Thị
Xem chi tiết
Nguyen Quynh Huong
13 tháng 7 2017 lúc 15:34

2, a, \(a+\dfrac{1}{a}\ge2\)

\(\Leftrightarrow\dfrac{a^2+1}{a}\ge2\)

\(\Rightarrow a^2-2a+1\ge0\left(a>0\right)\)

\(\Leftrightarrow\left(a-1\right)^2\ge0\)( là đt đúng vs mọi a)

vậy...................

Phương An
13 tháng 7 2017 lúc 15:37

Câu 1:

\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)

\(=\sqrt{4+5}=3\)

\(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{5-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)

Phương An
13 tháng 7 2017 lúc 15:49

2b)

Biến đổi tương đương:

\(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\) (1)

\(\Leftrightarrow\dfrac{a+b}{2}\ge\dfrac{a+2\sqrt{ab}+b}{4}\)

\(\Leftrightarrow2a+2b\ge a+2\sqrt{ab}+b\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) luôn đúng

=> (1) đúng

Dấu "=" xảy ra khi a = b.

2c)

Áp dụng BĐT Cauchy Shwarz dạng Engel, ta có:

\(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}=\sqrt{a}+\sqrt{b}\) (đpcm)

Dấu "=" xảy ra khi a = b.

2d)

Áp dụng BĐT AM - GM, ta có:

\(\dfrac{a^2+2}{\sqrt{a^2+1}}=\dfrac{a^2+1}{\sqrt{a^2+1}}+\dfrac{1}{\sqrt{a^2+1}}=\sqrt{a^2+1}+\dfrac{1}{\sqrt{a^2+1}}\ge2\) (đpcm)

Dấu "=" xảy ra khi a = 0

vvvvvvvv
Xem chi tiết
Hồng Phúc
15 tháng 3 2021 lúc 17:04

I. Đúng do BĐT Cosi \(a+\dfrac{9}{a}\ge2.\sqrt{a.\dfrac{9}{a}}=6\)

II. Sai do \(\dfrac{a^2+5}{\sqrt{a^2+4}}=\sqrt{a^2+4}+\dfrac{1}{\sqrt{a^2+4}}\ge2+\dfrac{1}{a^2+4}>2\)

III. Đúng do BĐT Cosi \(\dfrac{\sqrt{ab}}{ab+1}\le\dfrac{\sqrt{ab}}{2\sqrt{ab}}=\dfrac{1}{2}\)

IV. Đúng do BĐT BSC \(\left(a+\dfrac{1}{b}\right)\left(b+\dfrac{1}{a}\right)\ge\left(\sqrt{a}.\dfrac{1}{\sqrt{a}}+\sqrt{b}.\dfrac{1}{\sqrt{b}}\right)^2=4\)

Haa My
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 8 2020 lúc 22:32

1.

Chú ý rằng:

\(\left(a^3-3a^2+2\right)^2=\left(a^2-2a-2\right)^3+3\left(a^2-2a-2\right)^2\)

Bạn sẽ giải quyết được bài toàn

2.

\(\Leftrightarrow8a^3-6a+\left(2b-2\right)\sqrt{2b+1}=0\)

\(\Leftrightarrow\left(2a\right)^3-3.\left(2a\right)+\left(2a+1\right)\sqrt{2a+1}-3\sqrt{2a+1}=0\)

Đặt \(\left\{{}\begin{matrix}2a=x\\\sqrt{2b+1}=y\end{matrix}\right.\) rồi ghép nhân tử là xong

3.

\(8a^3+2a+\left(2b-6\right)\sqrt{5-2b}=0\)

\(\Leftrightarrow\left(2a\right)^3+2a-\left(5-2b\right)\sqrt{5-2b}-\sqrt{5-2b}=0\)

Đặt \(\left\{{}\begin{matrix}2a=x\\\sqrt{5-2b}=y\end{matrix}\right.\)

4.

Câu này ko biết làm kiểu lớp 9, lớp 11 thì được :(

Trước hết từ điều kiện biện luận được \(a>0\)

Khi đó chia 2 vế cho \(a^2\)

\(b\sqrt{1+b^2}-\frac{1}{a^2}\sqrt{1+a^2}=b-\frac{1}{a}\)

\(\Leftrightarrow b\sqrt{1+b^2}-b=\frac{1}{a^2}\sqrt{1+a^2}-\frac{1}{a}\)

\(\Leftrightarrow b\sqrt{1+b^2}-b=\frac{1}{a}\sqrt{1+\frac{1}{a^2}}-\frac{1}{a}\)

Hàm đặc trưng \(f\left(x\right)=x\sqrt{1+x^2}-x\) đồng biến trên R \(\Rightarrow b=\frac{1}{a}\)

Đặng Dung
Xem chi tiết
Trần Đạt
4 tháng 10 2017 lúc 21:57

thangbnsh@gmail.com helpme

Trần Đạt
4 tháng 10 2017 lúc 21:58

thangbnsh@gmail.comacelegona

Lê Tài Bảo Châu
Xem chi tiết
Kiệt Nguyễn
1 tháng 8 2020 lúc 8:33

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)

Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\)\(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)

Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*

\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{​​}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)

Đẳng thức xảy ra khi a = b = c

P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:

Khách vãng lai đã xóa
Phùng Minh Quân
27 tháng 7 2020 lúc 22:28

1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)

bài 2 xem có ghi nhầm ko

Khách vãng lai đã xóa
Phùng Minh Quân
27 tháng 7 2020 lúc 22:50

3a biến đổi tí là xong

b tuong tự bài 1 

Khách vãng lai đã xóa
songoku3
Xem chi tiết
Lê Nhật Khôi
25 tháng 1 2018 lúc 21:48

Trời thì ý bn là chứng minh bất đẳng thức côsi chứ j

Đây

Ta có: \(a,b\ge0\)  nên \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

Áp dụng hằng đẳng thức

Ta có:   \(\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2-2\sqrt{a}\cdot\sqrt{b}\ge0\)

Suy ra \(a+b-2\sqrt{ab}\ge0\)

Suy ra \(a+b\ge2\sqrt{ab}\)và dấu ''='' xảy ra khi và chỉ khi a=b

Câu tiếp tương tự

Với lại hình như cái này lớp 7 đâu có học đâu mà hỏi nhỉ ????????

Nguyễn Thị Hằng
Xem chi tiết
Phạm Minh Ngọc
Xem chi tiết
 Mashiro Shiina
6 tháng 4 2018 lúc 17:50

Lên GG: AM-GM