Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen hoan
Xem chi tiết
Akai Haruma
29 tháng 12 2023 lúc 16:27

Lời giải:

$a^2-2ab-3b^2\geq 0$

$\Leftrightarrow (a^2+ab)-(3ab+3b^2)\geq 0$

$\Leftrightarrow a(a+b)-3b(a+b)\geq 0$

$\Leftrightarrow (a+b)(a-3b)\geq 0$

$\Leftrightarrow a-3b\geq 0$ (do $a+b>0$ với mọi $a,b>0$)

$\Leftrightarrow a\geq 3b$

Xét hiệu:

$P-\frac{37}{3}=\frac{4a^2+b^2}{ab}-\frac{37}{3}$

$=\frac{12a^2+3b^2-37ab}{3ab}=\frac{(a-3b)(12a-b)}{3ab}\geq 0$ do $a\geq 3b>0$

$\Rightarrow P\geq \frac{37}{3}$

Vậy $P_{\min}=\frac{37}{3}$

Dinh Manh Linh
Xem chi tiết
Nguyễn Đức Trí
8 tháng 8 2023 lúc 0:11

\(a^2=3b^2\)

Vì \(a^2;b^2\) là số chính phương

\(\Rightarrow a^2⋮̸3b^2\)

Nên không tồn tại a;b nguyên dương thỏa đẳng thức \(a^2=3b^2\)

Nguyễn Đức Trí
8 tháng 8 2023 lúc 0:14

Phần lỗi màu đỏ là a2 không thể chia cho 3 có thương là b2 là số chính phương

bou99
Xem chi tiết
Nguyễn Huy Tú
25 tháng 7 2021 lúc 15:02

Bài 2 : 

\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

<=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = 3ab + 3bc + 3ca 

<=> a^2 + b^2 + c^2 = ab + bc + ca 

<=> 2a^2 + 2b^2 + 2c^2 = 2ab + 2bc + 2ca 

<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 = 0 

<=> a = b = c 

Nguyễn Huy Tú
25 tháng 7 2021 lúc 15:07

Bài 1 : 

a^2 + b^2 + 9 = ab + 3a + 3b 

<=> 2a^2 + 2b^2 + 18 = 2ab + 6a + 6b 

<=> a^2 - 2ab + b^2 + a^2 - 6a + 9 + b^2 - 6a + 9 = 0 

<=> ( a - b)^2 + ( a - 3)^2 + ( b - 3)^2 = 0 

Dấu ''='' xảy ra khi a = b = 3 

Nguyễn Việt Lâm
25 tháng 7 2021 lúc 15:14

1.

\(\Leftrightarrow2a^2+2b^2+18=2ab+6a+6b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-6a+9\right)+\left(b^2-6b+9\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-3\right)^2+\left(b-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-3=0\\b-3=0\end{matrix}\right.\) \(\Leftrightarrow a=b=3\)

2.

\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 11 2018 lúc 18:29

Chọn đáp án D

Ta có

Suy ra

Từ giả thiết ta có f ' x + f ' ' x = 10 e x  

 

Để phương trình  f ' x + f ' ' x = 10 e x có nghiệm

⇔  Phương trình (*) có nghiệm

 

* Nếu b = 0 thì S = a 2 ≥ 10  

* Nếu b ≠ 0 thì S = a 2 - 2 a b + 3 b 2 ≥ 10 . a b 2 - 2 . a b + 3 a b 2 + 1 .

Đặt t = a b t ∈ R , suy ra S ≥ 10 . t 2 - 2 t + 3 t 2 + 1 .

Xét hàm số f t = t 2 - 2 t + 3 t 2 + 1  trên R.

Ta có

Bảng biến thiên:

Quan sát bảng biến thiên ta thấy  f t ≥ 2 - 2

Nalumi Lilika
Xem chi tiết
Phạm Thị Anh Thư
Xem chi tiết
Zr_P114
25 tháng 12 2020 lúc 22:13

a) 87ab ⋮ 9 ⇔ a+b=27-(8+7)=12

Vậy a=(12+4)/2=8

        b=(12-4)/2=4

(Trên là công thức lớp 5 nha)

 

Trần Anh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 7 2019 lúc 8:30

S = 2 ln a - ln b - ln c = ln a 2 b c = ln 1 = 0

do a 2 = b c    

Chọn đáp án A.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 11 2017 lúc 10:30

Đáp án A

Ko Cần Chs
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 2 2021 lúc 0:00

Đặt \(P=a^2+b^2+c^2+ab+bc+ca\)

\(P=\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{2}\left(a^2+b^2+c^2\right)\)

\(P\ge\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{6}\left(a+b+c\right)^2=6\)

Dấu "=" xảy ra khi \(a=b=c=1\)