Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dia fic
Xem chi tiết
Hải Anh
27 tháng 12 2020 lúc 9:59

c=c.1 thay 1 bằng a+b+c xong cô si

 

ha quang minh
Xem chi tiết
Cúc Suri
Xem chi tiết
Nguyễn Thắng Tùng
Xem chi tiết
Zero Two 02
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 6 2021 lúc 21:18

\(3=a+b+c\ge3\sqrt[3]{abc}\Rightarrow abc\le1\)

BĐT tương đương:

\(3\left(ab+bc+ca\right)\ge abc\left[\left(a+b+c\right)^2-2\left(ab+bc+ca\right)+6\right]\)

\(\Leftrightarrow3\left(ab+bc+ca\right)\ge abc\left[15-2\left(ab+bc+ca\right)\right]\)

\(\Leftrightarrow\left(ab+bc+ca\right)\left(2abc+3\right)\ge15abc\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2\left(2abc+3\right)^2\ge225\left(abc\right)^2\)

Do \(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)=9abc\)

Nên ta chỉ cần chứng minh:

\(\left(2abc+3\right)^2\ge25abc\)

\(\Leftrightarrow\left(1-abc\right)\left(9-4abc\right)\ge0\) (luôn đúng với \(0< abc\le1\))

Dấu "=" xảy ra khi \(a=b=c=1\)

Nguyễn Khang
Xem chi tiết
Trần Minh Hoàng
12 tháng 1 2021 lúc 16:21

Đặt \(\left(\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c}\right)=\left(x,y,z\right)\) với x, y, z > 0 thì ta có \(x+y+z=1\).

Đặt biểu thức ở VT là A. Ta có: 

\(A=\sqrt{\dfrac{b^2+2a^2}{a^2b^2}}+\sqrt{\dfrac{c^2+2b^2}{b^2c^2}}+\sqrt{\dfrac{a^2+2c^2}{c^2a^2}}=\sqrt{x^2+2y^2}+\sqrt{y^2+2z^2}+\sqrt{z^2+2x^2}\).

Ta có bất đẳng thức \(\sqrt{a_1^2+a_2^2}+\sqrt{a_3^2+a_4^2}\ge\sqrt{\left(a_1+a_3\right)^2+\left(a_2+a_4\right)^2}\).

Đây là bđt Mincopxki cho hai bộ số thực và dễ dàng cm bằng biến đổi tương đương.

Do đó \(A\ge\sqrt{\left(x+y\right)^2+\left(\sqrt{2}y+\sqrt{2}z\right)^2}+\sqrt{z^2+2x^2}\ge\sqrt{\left(x+y+z\right)^2+\left(\sqrt{2}y+\sqrt{2}z+\sqrt{2}x\right)^2}=\sqrt{1+2}=\sqrt{3}=VP\).

Đẳng thức xảy ra khi a = b = c = 3.

Vậy...

 

Nguyễn Việt Lâm
12 tháng 1 2021 lúc 17:10

Tương tự: \(GT\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)

\(VT=\dfrac{\sqrt{a^2+a^2+b^2}}{ab}+\dfrac{\sqrt{b^2+b^2+c^2}}{bc}+\dfrac{\sqrt{c^2+a^2+a^2}}{ca}\)

\(VT\ge\dfrac{\sqrt{\dfrac{1}{3}\left(a+a+b\right)^2}}{ab}+\dfrac{\sqrt{\dfrac{1}{3}\left(b+b+c\right)^2}}{bc}+\dfrac{\sqrt{\dfrac{1}{3}\left(c+c+a\right)^2}}{ca}\)

\(VT\ge\sqrt{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c=3\)

Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 3 2021 lúc 0:05

\(N=\dfrac{\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3}{\left(ab\right)\left(bc\right)\left(ca\right)}\)

Đặt \(\left(ab;bc;ca\right)=\left(x;y;z\right)\Rightarrow x+y+z=0\Rightarrow N=\dfrac{x^3+y^3+z^3}{xyz}\)

\(N=\dfrac{x^3+y^3+z^3-3xyz+3xyz}{xyz}=\dfrac{\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]+3xyz}{xyz}=\dfrac{3xyz}{xyz}=3\)

 

Trà My
Xem chi tiết
Darlingg🥝
8 tháng 12 2019 lúc 10:16

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

Tính M = ab + bc + ca/ a2 + b2 + c2

\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)

\(\Rightarrow\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ca}+\frac{a}{ca}\)

\(\Rightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}=\frac{1}{c}\\\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\Rightarrow\frac{1}{b}=\frac{1}{a}\\\frac{1}{a}+\frac{1}{c}=\frac{1}{b}+\frac{1}{a}=\frac{1}{c}=\frac{1}{a}\end{cases}}\)

\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)

\(\Rightarrow M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{1.1+1.1+1.1}{1^2+1^2+1^2}=\frac{3}{3}=1\)

Khách vãng lai đã xóa
Nguyễn Thùy Trang
8 tháng 12 2019 lúc 10:20

Ta có \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

Mà \(a,b,c \ne0\) => \(ab,bc,ca \ne0\)

=> \(\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)

=> \(\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ca}+\frac{a}{ca}\)

=> \(\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)

=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)

=> \(a=b=c\)

Thay vào M ta có : \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a.a+a.a+a.a}{a^2+a^2+a^2}=\frac{3a^2}{3a^2}=1\)

 Vậy \(M=1\)

Khách vãng lai đã xóa
Nguyễn Thùy Trang
8 tháng 12 2019 lúc 10:21

Ta có \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

Mà \(a,b,c \ne0\) => \(ab,bc,ca \ne0\)

=> \(\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)

=> \(\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ca}+\frac{a}{ca}\)

=> \(\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)

=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)

=> \(a=b=c\)

Thay vào M ta có : \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a.a+a.a+a.a}{a^2+a^2+a^2}=\frac{3a^2}{3a^2}=1\)

 Vậy \(M=1\)

Khách vãng lai đã xóa
Đào Quang Hướng
Xem chi tiết
Xyz OLM
7 tháng 7 2021 lúc 15:36

Ta có : \(ab+bc+ca=0\)

<=> \(abc\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\)

<=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\left(\text{vì }a;b;c\ne0\right)\)

<=> \(\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)

<=> \(\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)

<=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)=-\frac{1}{c^3}\)

<=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{3}{ab}.\left(-\frac{1}{c}\right)\left(\text{vì }\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\right)\)

<=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

Khi đó \(P=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc.\frac{3}{abc}=3\)

Khách vãng lai đã xóa
friknob
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 8 2021 lúc 21:50

\(a^4+b^4+b^4+b^4\ge4\sqrt[4]{a^4b^{12}}=4ab^3\)

Tương tự:

\(b^4+3c^4\ge4bc^3\) ; \(c^4+3a^4\ge4ca^3\)

Cộng vế:

\(M\le a^4+b^4+c^4=1\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt[4]{3}}\)