Với a,b là các số thực. Điểm M(b;a) là điểm biểu diễn của số phức nào dưới đây
A. z = a+bi.
B. z = a-bi.
C. z = b+ai.
D. z = b-ai
Lời giải:
Ta có: \(\overrightarrow{MA}=(a-3;-1); \overrightarrow{MB}=(-3;b-1)\)
Để tam giác MAB vuông tại M thì: \(\overrightarrow{MA}\perp \overrightarrow{MB}\Leftrightarrow \overrightarrow{MA}.\overrightarrow{MB}=0\)
\(\Leftrightarrow -3(a-3)+(-1)(b-1)=0\)
\(\Leftrightarrow 3a+b=10\)
\(2S_{MAB}=|\overrightarrow{MA}|.|\overrightarrow{MB}|=\sqrt{(a-3)^2+1}.\sqrt{9+(b-1)^2}\)
\(=\sqrt{[(a-3)^2+1][9+(10-3a-1)^2}]=3\sqrt{[(a-3)^2+1][1+(a-3)^2]}=3[(a-3)^2+1]\geq 3\)
Vậy diện tích MAB nhỏ nhất khi \(a-3=0\Leftrightarrow a=3\)
\(a=3\Rightarrow b=10-3a=1\)
Vậy...........
Gọi A, B là hai điểm cực trị của đồ thị hàm số f(x) = x3 - 3x2 + m với m là tham số thực khác 0. Tìm tất cả các giá trị thực của tham số m để trọng tâm tam giác OAB thuộc đường thẳng 3x + 3y - 8 = 0.
A. m = 5
B. m = 2
C. m = 6
D. m = 4
Đầu tiên, ta cần tìm điểm cực trị của hàm số f(x) = x^3 - 3x^2 + m. Điều kiện cần và đủ để x_0 là điểm cực trị của hàm số y = f(x) là f’(x_0) = 0 và f’'(x_0) ≠ 0.
Ta có f’(x) = 3x^2 - 6x và f’'(x) = 6x - 6.
Giải phương trình f’(x) = 0, ta được x_1 = 0 và x_2 = 2. Kiểm tra điều kiện thứ hai, ta thấy f’‘(0) = -6 ≠ 0 và f’'(2) = 6 ≠ 0 nên x_1 = 0 và x_2 = 2 là hai điểm cực trị của hàm số.
Vậy, A = (0, f(0)) = (0, m) và B = (2, f(2)) = (2, 4 - m).
Trọng tâm G của tam giác OAB có tọa độ (x_G, y_G) = (1/3 * (x_A + x_B + x_O), 1/3 * (y_A + y_B + y_O)) = (2/3, 1/3 * (m + 4)).
Để G thuộc đường thẳng 3x + 3y - 8 = 0, ta cần có 3 * (2/3) + 3 * (1/3 * (m + 4)) - 8 = 0. Giải phương trình này, ta được m = 2.
Vậy, đáp án là B. m = 2.
Trong mặt phẳng tọa độ Oxy cho điểm M(3; 1). Giả sử A(a; 0) và B(0; b) (với a, b là các số thực không âm) là 2 giao điểm sao cho tam giác MAB vuông tại M và có diện tích nhỏ nhất. Tính giá trị biểu thức T = a2 + b2
tóm lại đề bài bạn cần làm như sau
bạn tính vecto MA rồi tính vecto MB từ đó tính độ dài MA và MB
=>diện tích tam giác vuông MAB=1/2 MA.MB rồi lập luận thế thôi hết bài
lập luận không khó đâu good luck
\(\overrightarrow{MA}=\left(a-3;-1\right);\overrightarrow{MB}=\left(-3;b-1\right)\)
Theo gt tam giác ABM vuôg tại M nên :
\(S=\dfrac{1}{2}MA.MB=\dfrac{1}{2}\sqrt{\left(a-3\right)^2+\left(b-1\right)^2}=\dfrac{1}{2}\sqrt{\left(a-3\right)^2+1}\sqrt{3^2+\left(9-3a\right)^2}=\dfrac{3}{2}\left[\left(a-3\right)^2+1\right]\ge\dfrac{3}{2}\)
min S =3/2 khi a=3, ta đc b=1 Do vậy T = a2+ b2 = 10
Cho hàm số y = a x 3 - x 2 + b x - 1 với a, b là các số thực, a ≠ 0 , a ≠ b cắt trục Ox tại ba điểm phân biệt sao cho hoành độ giao điểm đều là số thực dương. Tìm giá trị lớn nhất của biểu thức P = 5 a 2 - 3 a b + 2 a 2 ( b - a ) .
A. 15 3
B. 8 2
C. 11 6
D. Không tồn tại
Trong mặt phẳng tọa độ Oxy cho các đường thẳng (d) : y=mx−2m−1, m là số thực
1. Chứng minh với mọi số thực m thì các đường thẳng (d) luôn đi qua một điểm cố định
2. Gọi A và B lần lượt là giao điểm của (d) với trục Ox và trục Oy. Tìm m để diện tích tam giác OAB bằng 2
1, Ta có : y = mx - 2m - 1
<=> m ( x - 2 ) - 1 - y = 0
<=> m(x - 2) - (y+1) = 0
Dấu ''='' xảy ra khi x = 2 ; y = -1
Vậy (d) luôn đi qua A(2;-1)
2, (d) : y = mx - 2m - 1
Cho x = 0 => y = -2m - 1
=> d cắt Oy tại A(0;-2m-1)
=> OA = \(\left|-2m-1\right|\)
Cho y = 0 => x = \(\dfrac{2m+1}{m}\)
=> d cắt trục Ox tại B(2m+1/m;0)
=> OB = \(\left|\dfrac{2m+1}{m}\right|\)
Ta có : \(S_{OAB}=\dfrac{1}{2}\left|\dfrac{2m+1}{m}.\left(-2m-1\right)\right|=2\)
\(\Leftrightarrow\left|-\dfrac{\left(2m+1\right)^2}{m}\right|=4\Leftrightarrow\left[{}\begin{matrix}-\dfrac{\left(2m+1\right)^2}{m}=4\\-\dfrac{\left(2m+1\right)^2}{m}=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4m^2+8m+1=0\\4m^2+1=0\left(voli\right)\end{matrix}\right.\)
<=> m = \(\dfrac{-2\pm\sqrt{3}}{2}\)
Trong mặt phẳng tọa độ Oxy cho các đường thẳng (d) : \(y=mx-2m-1\) , m là số thực
1. Chứng minh với mọi số thực m thì các đường thẳng (d) luôn đi qua một điểm cố định
2. Gọi A và B lần lượt là giao điểm của (d) với trục Ox và trục Oy. Tìm m để diện tích tam giác OAB bằng 2
2: Tọa độ điểm A là:
\(\left\{{}\begin{matrix}y_A=0\\mx=2m+1\end{matrix}\right.\Leftrightarrow A\left(\dfrac{2m+1}{m};0\right)\)
Tọa độ điểm B là:
\(\left\{{}\begin{matrix}x=0\\y=-2m-1\end{matrix}\right.\Leftrightarrow B\left(-2m-1;0\right)\)
Theo đề, ta có: \(\left|\dfrac{4m^2+4m+1}{m}\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}4m^2+4m+1=4m\\4m^2+4m+1=-4m\end{matrix}\right.\Leftrightarrow4m^2+8m+1=0\)
\(\Leftrightarrow4m^2+8m+4m-3=0\)
\(\Leftrightarrow\left(2m+2\right)^2=3\)
hay \(m\in\left\{\dfrac{\sqrt{3}-2}{2};\dfrac{-\sqrt{3}-2}{2}\right\}\)
Cho hàm số y= 2x3-3( m+ 1) x2+ 6mx+ m3 với m là tham số thực. Tìm tất cả các giá trị của m để đồ thị hàm số có hai điểm cực trị A; B thỏa mãn AB = 2
A. m=0
B. m=0; m= 2.
C. m=1
D. m=2
Ta có

Để hàm số có hai điểm cực trị khi m khác -1
Tọa độ các điểm cực trị là A( 1; m3+ 3m-1) và B( m; 3m2)
Suy ra


Chọn B.
Cho hàm số \(y=\dfrac{x+b}{ax-2}\) có hàm số (C) . Biết a,b là các giá trị thực sao cho tiếp tuyến của (C) tại điểm M(1;-2) song song với đường thẳng d: 3x+y-4=0 . Tính a+b .
Cho hàm số y = a x 3 - x 2 + b x - 1 với a, b là các số thực, a khác 0, b khác a cắt trục Ox tại ba điểm phân biệt sao cho hoành độ giao điểm đều là số thực dương. Tìm giá trị lớn nhất của biểu thức P = 5 a 2 - 3 a b + 2 a 2 ( b - a )
A. 15 3
B. 8 2
C. 11 6
D. Không tồn tại