Cho biểu thức :
P = \(\left\{\frac{x}{x-2}+\frac{1}{x^2-4}\right\}:\frac{x+1}{x+2}\) với x\(\ne-1;x\ne\pm2\)
a; Rút gọn P
b; Tính giá trị của P tại \(x=\frac{1}{2}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh rằng :
a) Giá trị của biểu thức : \(\left(\frac{x+2}{x}\right)^2:\left(\frac{x^2+4}{x^2}+\frac{4}{x+1}\left(\frac{1}{x}+1\right)\right)\)bằng 1 với mọi giá trị \(x\ne0;x\ne-2\)
b) Giá trị của biểu thức\(\left(\frac{x}{2x-6}-\frac{x^2}{x^2-9}+\frac{x}{2x-9}\left(\frac{3}{x}-\frac{1}{x-3}\right)\right):\frac{x^2-5x-6}{18-2x^2}\) bằng 1 với mọi giá trị \(x\ne0;x\ne+-3;x\ne-1;x\ne6\)
a)\(\frac{x^2+4}{x^2}+\frac{4}{x+1}\left(\frac{1}{x}+1\right)\)
\(=\frac{x^2+4}{x^2}+\frac{4}{x+1}.\frac{x+1}{x}\)
\(=\frac{x^2+4}{x^2}+\frac{4}{x}\)
\(=\frac{x^2+4x+4}{x^2}\)
\(\left(\frac{x+2}{x}\right)^2\)
=>phép chia = 1 với mọi x # 0 và x#-1
b)Cm tương tự
Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.
Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599
= (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )
=(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )
= ( 1 + 5 + 52)(1 + 53+....+597)
= 31(1 + 53+....+597)
Vì có một thừa số là 31 nên A chia hết cho 31.
P/s Đừng để ý câu trả lời của mình
1. Cho biểu thức Q=\(\frac{\sqrt{x-\sqrt{4\left(x-1\right)}}+\sqrt{x+\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(1-\frac{1}{x-1}\right)\)
a) Tìm ĐK của x để Q có nghĩa.
b) Rút gọn biểu thức Q.
2. Tìm giá trị lớn nhất của biểu thức: M=\(\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}\)
3. CMR nếu \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)
với x≠y, yz≠1, xz≠1, x≠0, y≠0, z≠0
thì \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Rút gọn biểu thức sau: \(\left(\frac{x-\sqrt{x}}{x-1}-\frac{x}{x-2\sqrt{x}}\right)\left(1+\frac{1}{\sqrt{x}}\right)\) với x>0,x≠1,x≠4
(\(\frac{x-\sqrt{x}}{x-1}-\frac{x}{x-2\sqrt{x}}\))(1+\(\frac{1}{\sqrt{x}}\)) (với x>0,x\(\ne1;x\ne4\))
=
Bài 1:Cho biểu thức :A=\(\left(\frac{x^3-1}{x^2-x}+\frac{x^2-4}{x^2-2x}-\frac{2-x}{x}\right):\frac{x+1}{x}\) với x≠0;x≠1;x≠2;x≠-1
1,Rút gọn biểu thức A
2,Tính A biết x thỏa mãn x3-4x2+3x=0
Cho biểu thức \(A=\left(\frac{6x+1}{x^2-6}+\frac{6x-1}{x^2+6x}\right)\frac{x^2-36}{12x^2+12}\left(x\ne0;x\ne\pm6\right)\)
1, Rút gọn biểu thức A
2, Tính giá trị biểu thức A với \(x=\frac{1}{\sqrt{9+4\sqrt{5}}}\)
\(1,ĐK:x\ne0;x\ne\pm6\)
\(A=\left[\frac{6x+1}{x\left(x-6\right)}+\frac{6x-1}{x\left(x+6\right)}\right].\frac{\left(x+6\right)\left(x-6\right)}{12\left(x^2+1\right)}\)
\(=\frac{6x^2+36x+x+6+6x^2-36x-x+6}{x}.\frac{1}{12\left(x^2+1\right)}\)
\(=\frac{12\left(x^2+1\right)}{x}.\frac{1}{12\left(x^2+1\right)}=\frac{1}{x}\)
\(2,A=\frac{1}{x}=\frac{1}{\frac{1}{\sqrt{9+4\sqrt{5}}}}=\sqrt{9+4\sqrt{5}}\)
Cho tam giác ABC vuông tại B có góc B1=B2 ; Â=60o, kẻ BH vuông góc với AC (H thuộc AC). Qua B kẻ đường thẳng d song song với AC.
a) Tính góc ABH.
b) Chứng minh đường thẳng d vuông góc với BH.
Bài 1: Cho biểu thức : P = \(\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{-x+x\sqrt{x}+6}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Rút gọn P
b) Cho biểu thức \(Q=\frac{\left(x+27\right)P}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\), với x ≥ 0, x ≠ 1, x ≠ 4
Bài 2: Cho biểu thức \(A=\frac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}:\frac{-1}{-x^2+\sqrt{x}}\); \(B=x^4-5x^2-8x+2025\). Vs x > 0, x ≠ 1
a) Rút gọn A
b) Tìm giá trị của x để biểu thức T = B - 2A2 đạt GTNN
Bài 3: Cho biểu thức: \(P=\frac{2\sqrt{x}-1}{\sqrt{x}-1}-\frac{2\sqrt{x}+1}{\sqrt{x}+1}\) vs x ≥ 0, x ≠ 1
a) Rút gọn P
b) Tìm giá trị của x để P = \(\frac{3}{4}\)
c) Tìm GTNN của biểu thức A = \(\left(\sqrt{x}-4\right)\left(x-1\right).P\)
Bài 4: Cho biểu thức: \(A=\left(\frac{x+\sqrt{x}+1}{x+\sqrt{x}-2}-\frac{1}{1-\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right):\frac{1}{x-1}\); vs x ≥ 0, x ≠ 1
a) Rút gọn A
b) Tìm x để \(\frac{1}{A}\) là 1 số tự nhiên
Cho biểu thức : \(Q=\left(\frac{\sqrt{x^2+2}}{x^4+2\sqrt{x^3+1}}-\frac{\sqrt{x^2-2}}{x^4-1}\right)\left(x+\sqrt{x}\right)\) với x > 0 , x \(\ne\) 1
rút gọn biểu thức P =(\(\left(\frac{x-\sqrt{x}+2}{x-\sqrt{x}-2}-\frac{x}{x-2\sqrt{x}}\right):\frac{1-\sqrt{x}}{2-\sqrt{x}}\)) với x >0; x≠1, x≠4
cho biểu thức \(P=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\div\left(\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\right)\) ( với x>0 và x≠1)
1) Rút gọn biểu thức P
2) Chứng minh rằng với mọi x>0 và x ≠1 thì P>4
1) Cho biểu thức M = \(\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\div\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\) với x ≥ 0, x ≠ 4, x ≠ 9
a) Rút gọn biểu thức M
b) Với giá trị nào của x thì \(\frac{1}{M}\) đạt GTNN. Tìm GTNN đó
a)\(M=\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\left(\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}.\left(\sqrt{x}+1\right)\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}-2}\)
b)\(\frac{1}{M}=\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1-3}{\sqrt{x}+1}=1-\frac{3}{\sqrt{x}+1}\)
Ta có: \(\sqrt{x}\ge0,\forall x\ge0\)
\(\Leftrightarrow\sqrt{x}+1\ge1\)
\(\Leftrightarrow\frac{1}{\sqrt{x}+1}\le1\)
\(\Leftrightarrow\frac{3}{\sqrt{x}+1}\le3\)
\(\Leftrightarrow-\frac{3}{\sqrt{x}+1}\ge-3\)
\(\Leftrightarrow1-\frac{3}{\sqrt{x}+1}\ge-2\)
Dấu "=" xảy ra khi x=0
Vậy \(Min_{\frac{1}{M}}=-2\) khi x=0