Bài 3: trên đường tròn (O;R) lấy 2 điểm Avà B sao cho ^AOB=90độ
a)tính số đo cung nhỏ AB,số đo cung lớn AB
b)tính dộ dài cung nhỏ AB
c)tính diện tích hình quạt tròn giới hạn bởi cung nhỏ AB và 2 bán kính OA,OB.
Bài 1: Cho đường tròn (O;3) và điểm M,N sao cho OM=2 căn 2 và ON=3. Xác định vị trí của điểm M và N với (O).
Bài 2:Cho đường tròn (O) và a nằm trên đường tròn. vẽ góc xAy=90độ và Ax, Ay cắt đường tròn tại B và C, biết AB=6, AC=8. tính bán kính đường tròn (O)
Bài 1:
Điểm M nằm trong (O)
Điểm N nằm trên (O)
Giúp e vs ạ Bài IV (3 điểm) Cho đường tròn (O;R) và dương tháng 1 không có điểm chung với đường trên. Gọi M là một điểm thuộc đường thẳng đ, Qua M kẻ bài tiếp tuyến MA, MB tối đường tròn. Gọi II là hình chiếu vuông góc của O trên đường thẳng d 1) Chứng minh tứ giác OAMll nội tiếp. 2) Gọi giao diện của AB với Oll và OM lần lượt tại K vài Chứng minh OK OUT Of OM 1) Doạn tháng 01 cái (O) tại E. Chứng minh E li tâm đường trên nội tiếp lớn giác MAB. Tìm vị trí điểm M trên đường thẳng d di diện tích tam giác Olk đại gia tri lớn nhất
1: Sửa đề: tứ giác OAMB nội tiếp
góc OAM+góc OBM=180 độ
=>OAMB nội tiếp
2: góc MAE+góc OAE=90 độ
góc BAE+góc OEA=90 độ
góc OAE=góc OEA
=>góc MAE=góc BAE
=>AE là phân giác của góc MAB
mà ME là phân giác của góc AMB
nên E là tâm đường tròn nội tiếp ΔAMB
Bài 1.Trên mặt phẳngtọa độ có đường tròn tâm M, bán kính 3 cm. Tọa độ điểm M là (3; -2). Đường tròn tâm M có vị trí như thế nào đối với các trục tọa độ?
Bài 2.Cho đường tròn tâm O bán kính 6cm, và một điểm A cách O là 10cm. Kẻ tiếp tuyến AB với đường tròn trong đó B là tiếp điểm. Tính độ dài đoạn AB.
Bài 2:
Xét ΔOAB vuông tại B có
\(OA^2=OB^2+AB^2\)
hay AB=8(cm)
Bài 3(3 điểm). Cho nửa đường tròn tâm O đường kính AB = 2R, M là điểm bất kì trên nửa đường tròn (M ne A,B) . Trên cùng một nửa mặt phẳng bờ AB chứa nửa đường tròn, về các tiếp tuyến Ax và By với nửa đường tròn. Qua M kẻ tiếp tuyến thứ ba với nửa đường tròn, tiếp tuyến này cắt Ax, By lần lượt tại C và D. a, Chứng minh rằng: CD = AC + BD và góc COD = 90 b, Chứng minh rằng: AC.BD=R^ 2 c. Gọi K là giao điểm của AD và BC. Chứng minh rằng: MK vuông góc với AB
a: Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
Do đó: CM=CA
Xét (O) có
DB là tiếp tuyến
DM là tiếp tuyến
Do đó: DB=DM
Ta có: MC+MD=DC
nên DC=CA+DB
giúp mik với !!!
Bài 3:Cho đường tròn (O;R)đường kính AB. Qua điểm Bkẻtiếp tuyến Bx với đường tròn(O). Trên Bx lấy điểm M sao cho MA cắt đường tròn (O) tại điểm thứ hai D. Gọi E là trung điểm của đoạn AD.
a)Chứng minh rằng:AD.AM = 4R^2
b)Chứng minh rằng:4 điểm M, E, O, B cùng thuộc 1 đường tròn.
c)Kẻ BH vuông góc với OM tại H, BH cắt đường tròn (O) tại C. Chứng minh MC là tiếp tuyến của đường tròn (O).
d)Tia AH cắt đường tròn (O) tại Q. Chứng minh BQ đi qua trung điểm của HM
a: Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
Xét ΔBAM vuông tại B có BD là đường cao
nên \(AD\cdot AM=AB^2=4R^2\)
Bài 1: Cho 3 điểm M, N, P theop thứ tự đó cùng nằm trên 1 đt. Vẽ đường tròn tâm O bán kính R. Đường kính Np. Từ M kẻ tiếp tuyến MK với đường tròn tâm O (K là tiếp điểm). Tiếp tuyến tại N của đường tròn tâm O cắt MK tại D. Từ O kẻ đường thẳng cuông góc với OD cắt MK tại E
a) CMR KD.KE = R2
b) EP là tiếp tuyến của đường tròn tâm O
|(*mink đag cần rất gấp)
Bài 4(3 điểm). Cho đường tròn (O; R), đường kính AB. Lấy điểm C bất kỳ trên đường tròn (O; R) (C không trùng A; AC < BC). Qua C kẻ dây CD của đường tròn (O; R) vuông góc với đường kính AB tại I. Lấy điểm E sao cho I là trung điểm AE. Tia DE cắt đoạn thẳng BC tại F. Gọi K là trung điểm của BE. 1) Chứng minh tam giác BCD cân. 2) Chứng minh AC I/ DE và chứng minh F thuộc đường tròn tâm K đường kính BE. 3) Chứng minh IF là tiếp tuyến của đường tròn tâm K đường kính BE. 4) Lấy điểm M trên đoạn thẳng OC sao cho OM = CI. Chứng minh khi điểm C di chuyển trên nửa đường tròn (O; R) không chứa điểm D (C khác A, B) thì điểm M chạy trên một đường tròn cố định.
Bài 4. (4 điểm) Cho nửa đường tròn (O; R) đường kính BC. Lấy điểm A trên tia đối của tia CB. Kẻ tiếp tuyến AF của nửa đường tròn (O) (với F là tiếp điểm), tia AF cắt tiếp tuyến Bx của nửa đường tròn tại D. Biết AF = 4R/3. a) Chứng minh tứ giác OBDF nội tiếp. Định tâm I đường tròn ngoại tiếp tứ giác OBDF. b) Tính Cos góc DAB. c) Kẻ OM ⊥ BC (M ∈ AD). Chứng minh BD/DM - DM/AM = 1. d) Tính diện tích phần hình tứ giác OBDM ở bên ngoài nửa đường tròn (O) theo R.
a) Ta có: \(\angle DBO+\angle DFO=90+90=180\Rightarrow OBDF\) nội tiếp
Lấy I là trung điểm DO
Vì \(\Delta DBO,\Delta DFO\) lần lượt vuông tại B và F có I là trung điểm DO
\(\Rightarrow\left\{{}\begin{matrix}BI=DI=IO\\ID=IO=IF\end{matrix}\right.\Rightarrow IB=ID=IO=IF\Rightarrow I\) là tâm của (OBDF)
b) Ta có: \(AO=\sqrt{AF^2+OF^2}=\sqrt{\dfrac{16}{9}R^2+R^2}=\dfrac{5}{3}R\)
\(\Rightarrow cosDAB=\dfrac{AF}{AO}=\dfrac{\dfrac{4}{3}R}{\dfrac{5}{3}R}=\dfrac{4}{5}\)
c) Cần chứng minh \(\dfrac{BD}{DM}-1=\dfrac{DM}{AM}\Rightarrow\dfrac{DF-DM}{DM}=\dfrac{DM}{AM}\)
\(\Rightarrow\dfrac{MF}{DM}=\dfrac{DM}{AM}\Rightarrow DM^2=MF.MA\)
Vì \(\left\{{}\begin{matrix}MO\bot BC\\DB\bot BC\end{matrix}\right.\) \(\Rightarrow MO\parallel DB\)\(\Rightarrow\angle MOD=\angle BDO=\angle FDO\)
\(\Rightarrow\Delta MOD\) cân tại M \(\Rightarrow MO=MD\)
mà \(MO^2=MF.MA\Rightarrow MD^2=MF.MA\)
d) MO cắt nửa đường tròn tại E
Ta có: \(tanDAB=\dfrac{FO}{AF}=\dfrac{R}{\dfrac{4}{3}R}=\dfrac{3}{4}\)
mà \(tanDAB=\dfrac{MO}{OA}\Rightarrow\dfrac{MO}{OA}=\dfrac{3}{4}\Rightarrow MO=\dfrac{3}{4}.\dfrac{5}{3}R=\dfrac{5}{4}R\)
Vì \(MO\parallel DB\) \(\Rightarrow\dfrac{MO}{DB}=\dfrac{AO}{AB}=\dfrac{\dfrac{5}{3}R}{2R}=\dfrac{5}{6}\Rightarrow DB=\dfrac{MO}{\dfrac{5}{6}}=\dfrac{\dfrac{5}{4}R}{\dfrac{5}{6}}=\dfrac{3}{2}R\)
Có DB,OM rồi thì bạn thế vào tính \(S_{OBDM}=\dfrac{1}{2}.\left(BD+OM\right).BO\)
còn diện tích quạt \(BOE=\dfrac{90}{360}.R^2\pi=\dfrac{1}{4}R^2\pi\)
\(\Rightarrow\) diện tích tứ giác OBDM nằm ngoài đường tròn \(=S_{OBDM}-S_{quatBOE}\)
bạn thế vài tính nha
PS: ý tưởng là vậy chứ bạn tính toán lại cho kĩ,chứ mình hay tính nhầm lắm
cho (O;R) đường kính AB. C là 1 điểm trên đường tròn (O;R).Trên tia đối của tia CB lấy điểm D sao cho CD=CB. Khi C chuyển động trên đường tròn (O;R) thì D chuyển động trên đường nào ?( m.n giúp mk bài này vs ạ)
Ta có : \(\begin{cases}AC\perp BD\\BC=CD\end{cases}\)=> AC là đường trung trực của BD
\(\Rightarrow AB=AD\) mà AB không đổi (gt) => AD không đổi mà A cố định
=> D di chuyển trên đường tròn tâm A , bán kính AD
Bài 1: Cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn.Kẻ CH vuông góc với
Gọi I là trung điểm của AC,OI cắt tiếp tuyến tại A của đường tròn tại M,MB cắt CH tại K
Xác định vị trí của C để chu vi tam giác ACB đạt GTLN?tìm GTLN đó theo R
Bài 2: Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. M là 1 điểm thuộc dt d . Qua M kẻ tiếp tuyến MA,MB với đường tròn. Hạ OH vuông góc với d tại H.Nối Ab cắt OM tại I,OH tại K.Tia OM cắt đường tròn (O;R) tại E
Cm: E là tâm đường tròn nội tiếp tam giác MAB
Tìm vị trí của M trên đường thẳng d để diện tích tam giác OIK có diên tích lớn nhất
Bài 3 :cho 3 điểm a,b,c cố định nằm trên đường thẳng d(b nằm giữa a và c) .Vẽ đường tròn (0) cố định luôn đi qua B và C (0 là không nằm trên đường thẳng D ).Kẻ AM,AN là các tiếp tuyến với (0) tại M ,N .gọi I là trung điểm của BC,OA cắt MN tại H cắt (0) tại P và Q ( P nằm giữa A và O).BC cắt MN tại K
a.CM: O,M,N,I cùng nằm trên 1 đường tròn
b.CM điểm K cố định
c.Gọi D là trung điểm của HQ.Từ H kẻ đường thẳng vuông góc MD cắt MP tại E
d.Cm: P là trung điểm của ME
Bài 4:Cho đường tròn (O;R) đường kính CD=2R. M là 1 điểm thay đổi trên OC . Vẽ đường tròn (O') đường kính MD. Gọi I là trung điểm của MC,đường thẳng qua I vuông góc với CD cắt (O) tại E,F. đường thẳng ED cắt (O') tại P
a.Cm 3 điểm P,M,F thẳng hàng
b.Cm IP là tiếp tuyến của đường tròn (O;R)
c.Tìm vị trí của M trên OC để diện tích tam giác IPO lớn nhất
Bài 4:
a:
Xét (O) có
ΔCED nội tiếp
CD là đường kính
=>ΔCED vuông tại E
ΔOEF cân tại O
mà OI là đường cao
nên I là trung điểm của EF
Xét tứ giác CEMF có
I là trung điểm chung của CM và EF
CM vuông góc EF
=>CEMF là hình thoi
=>CE//MF
=<MF vuông góc ED(1)
Xét (O') có
ΔMPD nội tiêp
MD là đường kính
=>ΔMPD vuông tại P
=>MP vuông góc ED(2)
Từ (1), (2) suy ra F,M,P thẳng hàng
b: góc IPO'=góc IPM+góc O'PM
=góc IEM+góc O'MP
=góc IEM+góc FMI=90 độ
=>IP là tiếp tuyến của (O')