Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyệt Phong
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 10 2021 lúc 22:51

Bài 1: 

Điểm M nằm trong (O)

Điểm N nằm trên (O)

Kiệt Tuấn
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 4 2023 lúc 7:26

1: Sửa đề: tứ giác OAMB nội tiếp

góc OAM+góc OBM=180 độ

=>OAMB nội tiếp

2: góc MAE+góc OAE=90 độ

góc BAE+góc OEA=90 độ

góc OAE=góc OEA

=>góc MAE=góc BAE

=>AE là phân giác của góc MAB

mà ME là phân giác của góc AMB

nên E là tâm đường tròn nội tiếp ΔAMB

Vũ Khánh Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 9 2021 lúc 20:41

Bài 2: 

Xét ΔOAB vuông tại B có 

\(OA^2=OB^2+AB^2\)

hay AB=8(cm)

Huong Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 12 2021 lúc 14:57

a: Xét (O) có

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: CM=CA

Xét (O) có

DB là tiếp tuyến

DM là tiếp tuyến

Do đó: DB=DM

Ta có: MC+MD=DC

nên DC=CA+DB

Chu Thành Nam
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 12 2021 lúc 19:22

a: Xét (O) có 

ΔADB nội tiếp

AB là đường kính

Do đó: ΔADB vuông tại D

Xét ΔBAM vuông tại B có BD là đường cao

nên \(AD\cdot AM=AB^2=4R^2\)

Linh Bùi
Xem chi tiết
Huyền Anh Đặng
Xem chi tiết
Hương Hoàng
Xem chi tiết
An Thy
11 tháng 6 2021 lúc 20:12

a) Ta có: \(\angle DBO+\angle DFO=90+90=180\Rightarrow OBDF\) nội tiếp

Lấy I là trung điểm DO 

Vì \(\Delta DBO,\Delta DFO\) lần lượt vuông tại B và F có I là trung điểm DO

\(\Rightarrow\left\{{}\begin{matrix}BI=DI=IO\\ID=IO=IF\end{matrix}\right.\Rightarrow IB=ID=IO=IF\Rightarrow I\) là tâm của (OBDF)

b) Ta có: \(AO=\sqrt{AF^2+OF^2}=\sqrt{\dfrac{16}{9}R^2+R^2}=\dfrac{5}{3}R\)

\(\Rightarrow cosDAB=\dfrac{AF}{AO}=\dfrac{\dfrac{4}{3}R}{\dfrac{5}{3}R}=\dfrac{4}{5}\)

c) Cần chứng minh \(\dfrac{BD}{DM}-1=\dfrac{DM}{AM}\Rightarrow\dfrac{DF-DM}{DM}=\dfrac{DM}{AM}\)

\(\Rightarrow\dfrac{MF}{DM}=\dfrac{DM}{AM}\Rightarrow DM^2=MF.MA\) 

Vì \(\left\{{}\begin{matrix}MO\bot BC\\DB\bot BC\end{matrix}\right.\) \(\Rightarrow MO\parallel DB\)\(\Rightarrow\angle MOD=\angle BDO=\angle FDO\) 

\(\Rightarrow\Delta MOD\) cân tại M \(\Rightarrow MO=MD\)

mà \(MO^2=MF.MA\Rightarrow MD^2=MF.MA\)

d) MO cắt nửa đường tròn tại E

Ta có: \(tanDAB=\dfrac{FO}{AF}=\dfrac{R}{\dfrac{4}{3}R}=\dfrac{3}{4}\)

mà \(tanDAB=\dfrac{MO}{OA}\Rightarrow\dfrac{MO}{OA}=\dfrac{3}{4}\Rightarrow MO=\dfrac{3}{4}.\dfrac{5}{3}R=\dfrac{5}{4}R\)

Vì \(MO\parallel DB\) \(\Rightarrow\dfrac{MO}{DB}=\dfrac{AO}{AB}=\dfrac{\dfrac{5}{3}R}{2R}=\dfrac{5}{6}\Rightarrow DB=\dfrac{MO}{\dfrac{5}{6}}=\dfrac{\dfrac{5}{4}R}{\dfrac{5}{6}}=\dfrac{3}{2}R\)

Có DB,OM rồi thì bạn thế vào tính \(S_{OBDM}=\dfrac{1}{2}.\left(BD+OM\right).BO\)

còn diện tích quạt \(BOE=\dfrac{90}{360}.R^2\pi=\dfrac{1}{4}R^2\pi\)

\(\Rightarrow\) diện tích tứ giác OBDM nằm ngoài đường tròn \(=S_{OBDM}-S_{quatBOE}\)

bạn thế vài tính nha

PS: ý tưởng là vậy chứ bạn tính toán lại cho kĩ,chứ mình hay tính nhầm lắm

undefined

 

phantuananh
Xem chi tiết
Hoàng Lê Bảo Ngọc
6 tháng 7 2016 lúc 21:28

A B C D O

Ta có : \(\begin{cases}AC\perp BD\\BC=CD\end{cases}\)=> AC là đường trung trực của BD

\(\Rightarrow AB=AD\) mà AB không đổi (gt) => AD không đổi mà A cố định

=> D di chuyển trên đường tròn tâm A , bán kính AD

Lê Trần Ngọc Trâm
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 2 2023 lúc 21:59

Bài 4:

a: 

Xét (O) có

ΔCED nội tiếp

CD là đường kính

=>ΔCED vuông tại E

ΔOEF cân tại O

mà OI là đường cao

nên I là trung điểm của EF

Xét tứ giác CEMF có

I là trung điểm chung của CM và EF

CM vuông góc EF

=>CEMF là hình thoi

=>CE//MF

=<MF vuông góc ED(1)

Xét (O') có

ΔMPD nội tiêp

MD là đường kính

=>ΔMPD vuông tại P

=>MP vuông góc ED(2)

Từ (1), (2) suy ra F,M,P thẳng hàng

b: góc IPO'=góc IPM+góc O'PM

=góc IEM+góc O'MP

=góc IEM+góc FMI=90 độ

=>IP là tiếp tuyến của (O')