Ta có : \(\begin{cases}AC\perp BD\\BC=CD\end{cases}\)=> AC là đường trung trực của BD
\(\Rightarrow AB=AD\) mà AB không đổi (gt) => AD không đổi mà A cố định
=> D di chuyển trên đường tròn tâm A , bán kính AD
Ta có : \(\begin{cases}AC\perp BD\\BC=CD\end{cases}\)=> AC là đường trung trực của BD
\(\Rightarrow AB=AD\) mà AB không đổi (gt) => AD không đổi mà A cố định
=> D di chuyển trên đường tròn tâm A , bán kính AD
Cho đường tròn (O), cung BC có số đo bằng \(120^0\), điểm A di chuyển trên cung lớn BC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC. Hỏi điểm D di chuyển trên đường nào ?
Cho nửa đường tròn (O) đường kính AB = 2R. Hai điểm C, D di động trên nửa đường tròn sao cho CD = R. Gọi M,N là chân các đường vuông góc kẻ từ A, B đến đường thẳng CD. Tính diện tích lớn nhất của tứ giác AMNB.
Cho đường tròn (O;R) đường kính BC . trên tia đối của tia BC lấy điểm A. Qua A vẽ đường d vuông góc với BC . kẻ tiếp tuyến AM với đường tròn (O;R) ( M là tiếp điểm ) đường thẳng CM cắt đường thẳng d tại E . đường thẳng BE cắt đường tròn (O;R) tại N . CMR :
a) tứ giác ABME là tứ giác nội tiếp
b) AN là tiếp tuyến của (O;R)
c) AE; BM ; CN đồng quy
mấy pn ơi giúp mik với
mik làm đc câu a và b rồi còn câu c thôi
làm giúp mik câu c với
Cho đường tròn tâm O, bán kính R, đường thẳng d không đi qua O và cắt đường tròn tai 2 điểm A và B. Từ một điểm C trên d (C nằm ngoài đường tròn) kẻ hai tiếp tuyến CM và CN với đường tròn ( M,N thuộc(O)). Gọi H là trung điểm AB, đường thẳng OH cắt tia CN tại K. a/ CM 5 điểm C,O,H,M,N thuộc cùng một đường tròn. b/ CM KN.KC=KH.KO c/ 1 đường thẳng đi qua O song song MN cắt các tia CM,CN lần lược tại E và F. Xác định vị trí của C trên d sao cho diện tích tam giác CEF nhỏ nhất
Cho đường tròn o và 2 điểm A,B cố định thuộc đường tròn . Gọi N là một điểm thay đổi trên đường tròn O ; I là trung điểm AN; M là hình chiếu của I trên BN
a> CMR: đường thẳng MI luôn đi qua 1 điểm cố định
b> Hỏi điểm M chuyển động trên đường nào khi N chuyển động trên đường thảng O
Cho đường tròn (O;R), đường kính AB. Lấy điểm C tùy ý trên cung AB sao cho AB < AC.
a) Chứng minh tam giác ABC vuông.
b) Qua A vẽ tiếp tuyến (d) với đường tròn (O), BC cắt (d) tại F. Qua C vẽ tiếp tuyến (d’) với đường tròn (O), (d’) cắt (d) tại D. Chứng minh : DA =DF.
c) Hạ CH vuông góc AB (H thuộc AB), BD cắt CH tại K. Chứng minh K là trung điểm CH.
d) Tia AK cắt DC tại E. Chứng minh EB là tiếp tuyến của (O) , suy ra OE // CA.
Giúp tôi giải câu b),c)
Cho (0,R) và điểm A nằm ngoài đường tròn. Kẻ tiếp tuyến AB, AC (B, C là tiếp điểm). Trên đường thẳng d đi qua trung điểm của AB và song song với BC lấy P. Đường tròn đường kính OP cắt (O) tại M và N. CMR: PN=PM=PA
Cho đường tròn (O) có đường kính AB cố định, M là 1 điểm thuộc đường tròn (M khác A,B). Các tiếp tuyến của (O) tai A và M cắt nhau tại C. Đường tròn (I) qua M và tiếp xúc với đường thẳng AC tại C, CD là đường kính của (I). Chứng minh
a, O,M,D thẳng hàng
b, Tam giác COD cân
c, Đường thẳng qua D và vuông góc với BC luôn đi qua 1 điểm cố định khi M di động trên (O)
Cho đường tròn tâm O đường kính AB. Từ 1 điểm M nằm trên nửa đường tròn vẽ tiếp tuyến xy. Vẽ AD và BC cùng vuông góc với xy.
C/m MC=MDC/m AD+BC có giá trị không đổi khi M di chuyển trên nửa đường tròn.C/m AD là tiếp tuyến của đường tròn đường kính CD.Xác định vị trí của M trên nửa đường tròn để diện tích tứ giác ABCD lớn nhất.