Cho đường tròn tâm O đường kính AB. Từ 1 điểm M nằm trên nửa đường tròn vẽ tiếp tuyến xy. Vẽ AD và BC cùng vuông góc với xy.
C/m MC=MDC/m AD+BC có giá trị không đổi khi M di chuyển trên nửa đường tròn.C/m AD là tiếp tuyến của đường tròn đường kính CD.Xác định vị trí của M trên nửa đường tròn để diện tích tứ giác ABCD lớn nhất.Cho đường tròn đường kính AB. Qua C thuộc nửa đường tròn kẻ tiếp tuyến d với đường tròn. Gọi E, F lần lượt là chân đường vuông góc kẻ từ A,B đến d và H là chân đường vuông góc kẻ từ C đến AB. CMR:
a) AC là đường phân giác của góc BAE
b) \(CH^2=BF.AE\)
Cho đường tròn tâm O, bán kính R, đường thẳng d không đi qua O và cắt đường tròn tai 2 điểm A và B. Từ một điểm C trên d (C nằm ngoài đường tròn) kẻ hai tiếp tuyến CM và CN với đường tròn ( M,N thuộc(O)). Gọi H là trung điểm AB, đường thẳng OH cắt tia CN tại K. a/ CM 5 điểm C,O,H,M,N thuộc cùng một đường tròn. b/ CM KN.KC=KH.KO c/ 1 đường thẳng đi qua O song song MN cắt các tia CM,CN lần lược tại E và F. Xác định vị trí của C trên d sao cho diện tích tam giác CEF nhỏ nhất
Cho đường tròn (O) có đường kính AB cố định, M là 1 điểm thuộc đường tròn (M khác A,B). Các tiếp tuyến của (O) tai A và M cắt nhau tại C. Đường tròn (I) qua M và tiếp xúc với đường thẳng AC tại C, CD là đường kính của (I). Chứng minh
a, O,M,D thẳng hàng
b, Tam giác COD cân
c, Đường thẳng qua D và vuông góc với BC luôn đi qua 1 điểm cố định khi M di động trên (O)
BT1: Cho tam giác ABC ( AB< AC) nội tiếp đường tròn tâm O . Ba đường cao AH, BE, CF cắt nhau tại I. Kẻ đường kính AD của đường tròn O, gọi M là trung điểm BC.
a/ Chứng minh: 4 điểm B, F, E, C cùng nằm trên một đường tròn
b/ Chứng minh : EF < BC
c/ Tứ giác BICD là hình gì ? Vì sao ?
d/ Chứng minh : OM = AI / 2
BT2: Cho đường tròn tâm O, điểm A nằm ngoài đường tròn. Từ A vẽ hai đường thẳng cắt đường tròn, đường thứ nhất cắt đường tròn tại M và N ( M nằm giữa A và N ), đường thứ 2 cắt đường tròn tại E và F ( E nằm giữa A và F ) sao cho MN = EF. Kẻ OH vuông góc MN, OK vuông góc EF.
a/ So sánh AH và AK
b/ Chứng minh : AM = AE
c/ Tứ giác MEFN là hình gì ? Vì sao ?
Cho nửa đường tròn (O) đường kính EF. Từ O, vẽ tia Ot vuông góc EF, Nó cắt nửa đường tròn tâm O tại I. Trên tia It lấy điểm A sao cho IA=IO. Từ A, kẻ 2 tiếp tuyến AP và AQ với nửa đường tròn ( P,Q là các tiếp điểm)
a)chứng minh tứ giác APOQ nội tiếp và tam giác APQ là tam giác đều
b)Từ điểm S tùy ý trên cung PQ ( S không trùng với P, Q), vẽ tiếp tuyến thứ 3 với nửa đường tròn (O); tiếp tuyến này cắt AP tại H, cắt AQ tại K. Tính số đo độ của góc HOK và chu vi tam giác AHK theo R.
c)Gọi M,N lần lượt là giao điểm của PQ với OH và OK. Chứng minh tứ giác OMKQ nội tiếp
d) Chứng tỏ 3 đường thẳng HN, KM, OS đồng quy tại một điểm và SOMN=1/4 SOKH
cho 1/2 (o0 đường kính AB, qua điểm C thuộc nửa đường tròn ta kẻ tiếp tuyến d. Gọi E và F lần lượt là các chân đường vuong góc, kẻ từ A và B đến d. Vẽ OH vuông góc với AB. Chứng minh:
a) CE=CF
b)AC là tia phân giác của góc BAE
c) CH^2 = AE*BF
Cho đường tròn (O;R) có dường kính BC, A là 1 điểm di động trên đường tròn. Vẽ Δ đều ABM có đỉnh M nằm ngoài đường tròn (O). Từ C vẽ CH vuông góc MB.
a) C/m: OM vuông góc AB
b) C/m: OM=CH
c) Gọi D, E, F, G theo thứ tự là trung điểm của OC, CM, MH, OH. C/m tứ giác DEFG là hình thoi.
Bài 1: Cho đường tròn tâm O, đường kính AB. Lấy C thuộc đường tròn tâm O. Kẻ tiếp tuyến tại A của đường tròn tâm O cắt BC tại D. Gọi M là trung điểm của AD.
a) CM: MC là tiếp tuyến của đường tròn tâm O
b) CM: MO vuông góc với AC tại trung điểm I của AC
Bài 2: Từ điểm P nằm ngoài đường tròn tâm O bán kính R. Vẽ 2 tiếp tuyến PA, PB (A, B là các tiếp điểm). Gọi H là chân đường vuông góc kẻ từ A đến đường kính BC. Chứng minh rằng PC giao AH tại trung điểm I của AH