Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Buddy
Xem chi tiết

a) Ta có: \(\Delta ABC \backsim \Delta MNP\) suy ra \(\frac{{AB}}{{MN}} = \frac{{BC}}{{NP}}\,\,\left( 1 \right)\) và \(\widehat B = \widehat N\)

Mà D là trung điểm BC và Q là trung điểm NP nên \(BC = 2BD\) và \(NP = 2NQ\)

Thay vào biểu thức (1) ta được \(\frac{{AB}}{{MN}} = \frac{{2BD}}{{2NQ}} \Rightarrow \frac{{AB}}{{MN}} = \frac{{BD}}{{NQ}}\)

Xét tam giác ABD và tam giác MNQ có:

\(\frac{{AB}}{{MN}} = \frac{{BD}}{{NQ}}\) và \(\widehat B = \widehat N\)

\( \Rightarrow \Delta ABD \backsim \Delta MNQ\) (c-g-c)

b) Vì \(\Delta ABD \backsim \Delta MNQ\) nên ta có \(\frac{{AB}}{{MN}} = \frac{{AD}}{{MQ}}\,\,\left( 2 \right)\) và \(\widehat {BAD} = \widehat {NMQ}\) hay \(\widehat {BAG} = \widehat {NMK}\)

Mà G và K lần lượt là trọng tâm của tam giác ABC và tam giác MNP nên \(AD = \frac{3}{2}AG\) và \(MQ = \frac{3}{2}MK\).

Thay vào (2) ta được: \(\frac{{AB}}{{MN}} = \frac{{\frac{3}{2}AG}}{{\frac{3}{2}MK}} \Rightarrow \frac{{AB}}{{MN}} = \frac{{AG}}{{MK}}\)

Xét tam giác ABG và tam giác NMK có:

\(\frac{{AB}}{{MN}} = \frac{{AG}}{{MK}}\) và \(\widehat {BAG} = \widehat {NMK}\)

\( \Rightarrow \)\(\Delta ABG \backsim \Delta MNK\) (c-g-c)

𝓚. 𝓢𝓸𝔀𝓮
Xem chi tiết
肖战Daytoy_1005
7 tháng 3 2021 lúc 20:27

Xét ∆HAF và ∆HCD:

\(\widehat{HFA}=\widehat{HDC}=90^o\)

\(\widehat{AHF}=\widehat{CHD}\) (2 góc đối đỉnh)

=> ∆HAF~∆HCD(g.g)

b) Xét ∆AHB có: M là trung điểm của AH 

                           N là trung điểm của HB

=> MN là đường trung bình của ∆AHB

=>MN//AB và \(MN=\dfrac{1}{2}AB\)

=> \(\widehat{HMN}=\widehat{BAM}\) (2 góc đồng vị)

Tương tự ở ∆AHC ta được: \(MP=\dfrac{1}{2}AC\)  và \(\widehat{HMP}=\widehat{CAM}\)

Ta có: \(\widehat{BAC}=\widehat{BAD}+\widehat{CAD}=\widehat{NMH}+\widehat{PMH}=\widehat{NMP}\)

            \(\dfrac{MN}{MP}=\dfrac{\dfrac{1}{2}AB}{\dfrac{1}{2}AC}=\dfrac{AB}{AC}\)

Xét ∆MNP và ∆ABC có:

\(\widehat{NMP}=\widehat{BAC}\left(cmt\right)\)

\(\dfrac{MN}{MP}=\dfrac{AB}{AC}\left(cmt\right)\)

=> ∆MNP~∆ABC

Ta có: \(\dfrac{S_{MNP}}{S_{ABC}}=\left(\dfrac{MN}{AB}\right)^2=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)

=> \(S_{MNP}=\dfrac{1}{4}S_{ABC}\)

Cỏ dại
Xem chi tiết
Lê Thanh Thúy
Xem chi tiết
Baozi exo
Xem chi tiết
Tâm Trần Huy
15 tháng 1 2017 lúc 11:12

A B C D M H K

xét tam giác AMB và tam giác CMD có

AM = MC (gt)

góc AMB = góc CMD ( đối đỉnh )

BM = MD (gt)

do đó tam giác AMB = tam giác CMD (c.g.c)

phlphl
11 tháng 12 2017 lúc 14:31

giúp minh câu c nha mình cũng bí bài này

Wayne Rooney
12 tháng 12 2017 lúc 12:34

ai jup mik câu b với câu c với

khucdannhi
Xem chi tiết
阮草~๖ۣۜDαɾƙ
Xem chi tiết
Nữ hoàng sến súa là ta
Xem chi tiết
Cố Tử Thần
15 tháng 1 2019 lúc 22:16

xét tam giác ABC có BD=DA; BE=EC nên DE là đường trung bình của tam giác ABC suy ra DE song song vs AF

tương tự cm đc EFsong song vs AD

suy ra tứ giác ADEF là hình bình hành

Trần Thùy Dương
16 tháng 1 2019 lúc 12:39

a)  Xét tam giác ABC ta có : \(AF=CF\) ( vì F là trung điểm của AC )

                                           \(EB=EC\)( vì E là trung điểm của BC )

=> EF là đường trung bình tam giác ABC.

\(\Rightarrow EF//AD\)(1)

và  \(EF=\frac{1}{2}AB\)

Mà \(BD=AD\)

\(\Leftrightarrow EF=AD\) (2)

Từ (1) và (2)

=> ADEF là hình bình hành  (đpcm)

Trần Thùy Dương
16 tháng 1 2019 lúc 12:41

A B C D E F

Ha Thi Dinh Trung tam th...
Xem chi tiết