Bài 5. Trường hợp bằng nhau thứ hai của tam giác: cạnh - góc - cạnh

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Cho \(\Delta ABC = \Delta MNP\). Gọi D, E lần lượt là trung điểm của BC và CA; Q, R lần lượt là trung điểm của NP và PM. Chứng minh:

a) AD = MQ;                                                                   

b) DE = QR.

Kiều Sơn Tùng
17 tháng 9 2023 lúc 21:27

a) Xét hai tam giác ABD và tam giác MNQ:

     AB = MQ (do \(\Delta ABC = \Delta MNP\)).

     \(\widehat {ABD} = \widehat {MNQ}\) (\(\widehat {ABD} = \widehat {MNQ}\)).

     BD = NQ (\(\dfrac{1}{2}BC = \dfrac{1}{2}NP\))

    BC = NP (do \(\Delta ABC = \Delta MNP\)).

Vậy \(\Delta ABD = \Delta MNQ\)(c.g.c) nên AD = MQ ( 2 cạnh tương ứng)

b) Vì \(\Delta ABC = \Delta MNP\) nên BC = NP ( 2 cạnh tương ứng) . Do đó, \(\dfrac{1}{2}BC = \dfrac{1}{2}NP\) hay DC = QP

Vì \(\Delta ABC = \Delta MNP\) nên AC = MP  ( 2 cạnh tương ứng) . Do đó, \(\dfrac{1}{2}AC = \dfrac{1}{2}MP\) hay EC = RP

Xét hai tam giác DEC và tam giác QRP:

DC = QP 

\(\widehat {ECD} = \widehat {RPQ}\)(\(\Delta ABC = \Delta MNP\))

EC = RP 

Vậy \(\Delta DEC = \Delta QRP\)(c.g.c) nên DE = QR ( 2 cạnh tương ứng)


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết