Cho đa thức P(x)=\(^{x^2}\)+ax+b
P(1)=3;P(-2)=4 tìm a,b
Xác định a; b để:
a) Đa thức f(x)=\(x^4-3x^3+x^2+ax+b\)⋮cho đa thức g(x)=\(x^2-3x+2\)
b) Đa thức f(x)=\(2x^3+ax+b\) ⋮cho đa thức g(x)=x+1
c) Đa thức f(x)=\(2x^4+ax^2+x+b\) ⋮cho đa thức g(x)=x+2 và ⋮cho h(x)=\(x^2-1\)dư x
d) Đa thức f(x)=\(ax^3+bx^2+5x-50\)⋮cho đa thức g(x)=\(x^2+3x-10\)
Sử dụng định lý Bezout:
a/ \(g\left(x\right)=0\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(f\left(x\right)⋮g\left(x\right)\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(2\right)=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)
b/ \(g\left(x\right)=0\Rightarrow x=-1\)
\(\Rightarrow f\left(-1\right)=0\Rightarrow-a+b=2\Rightarrow b=a+2\)
Tất cả các đa thức có dạng \(f\left(x\right)=2x^3+ax+a+2\) đều chia hết \(g\left(x\right)=x+1\) với mọi a
c/ \(g\left(x\right)=0\Rightarrow x=-2\Rightarrow f\left(-2\right)=0\Rightarrow4a+b=-30\)
\(2x^4+ax^2+x+b=\left(x^2-1\right).Q\left(x\right)+x\)
Thay \(x=1\Rightarrow a+b=-2\)
\(\Rightarrow\left\{{}\begin{matrix}4a+b=-30\\a+b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{28}{3}\\b=\frac{22}{3}\end{matrix}\right.\)
d/ Tương tự: \(\left\{{}\begin{matrix}f\left(2\right)=8a+4b-40=0\\f\left(-5\right)=-125a+25b-75=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\\b=\end{matrix}\right.\)
Xác định a; b để:
a) Đa thức f(x)=\(x^4-3x^3+x^2+ax+b\)⋮cho đa thức g(x)=\(x^2-3x+2\)
b) Đa thức f(x)=\(2x^3+ax+b\) ⋮cho đa thức g(x)=x+1
c) Đa thức f(x)=\(2x^4+ax^2+x+b\) ⋮cho đa thức g(x)=x+2 và ⋮cho h(x)=\(x^2-1\)dư x
d) Đa thức f(x)=\(ax^3+bx^2+5x-50\)⋮cho đa thức g(x)=\(x^2+3x-10\)
a) Ta có: \(g\left(x\right)=x^2-3x+2\)
\(=x^2-x-2x+2\)
\(=x\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-1\right)\left(x-2\right)\)
Vì \(f\left(x\right)⋮g\left(x\right)\)
\(\Rightarrow f\left(x\right)=\left(x-1\right)\left(x-2\right)q\left(x\right)\)
\(\Rightarrow\hept{\begin{cases}f\left(1\right)=\left(1-1\right)\left(1-2\right)q\left(1\right)=0\left(1\right)\\f\left(2\right)=\left(1-2\right)\left(2-2\right)q\left(2\right)=0\left(2\right)\end{cases}}\)
Từ \(\left(1\right)\Leftrightarrow1^4-3.1^3+1^2+a+b=0\)
\(\Leftrightarrow-1+a+b=0\)
\(\Leftrightarrow a+b=1\left(3\right)\)
Từ \(\left(2\right)\Leftrightarrow2^4-3.2^3+2^2+2a+b=0\)
\(\Leftrightarrow-4+2a+b=0\)
\(\Leftrightarrow2a+b=4\left(4\right)\)
Từ \(\left(3\right);\left(4\right)\Rightarrow\hept{\begin{cases}a+b=1\\2a+b=4\end{cases}\Leftrightarrow\hept{\begin{cases}a=3\\b=-2\end{cases}}}\)
Vậy a=3 và b=-2 để \(f\left(x\right)⋮g\left(x\right)\)
Các phần sau tương tự
a) Tìm a,b để đa thức 2x3 - x2 + ax + b chia hết cho đa thức x2 - 1
b) Tím 2 số a và b để đa thức x4 + ax2 + b chia hết cho đa thức x2 - x +1
Đa thức \(x^2-1\)có nghiệm \(\Leftrightarrow x^2-1=0\)
\(\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\)
-1 và 1 là hai nghiệm của đa thức \(x^2-1\)
Để đa thức \(2x^3-x^2+ax+b\)chia hết cho đa thức \(x^2-1\)thì -1 và 1 cũng là hai nghiệm của đa thức \(2x^3-x^2+ax+b\)
Nếu x = -1 thì \(-2-1-a+b=0\Leftrightarrow a-b=-3\)(1)
Nếu x = 1 thì \(2-1+a+b=0\Leftrightarrow a+b=-1\)(2)
Từ (1) và (2) suy ra \(\hept{\begin{cases}a=\frac{-3-1}{2}=-2\\b=\frac{-1+3}{2}=1\end{cases}}\)
Vậy a = -2, b = 1
a) Tìm a để đa thức x3-x2-x+a chia hết cho đa thức x+2
b) Tìm a và b để đa thức x3+ax2+2x+b chia hết cho x2+x+1
c) Tìm a và b để đa thức x3+4x2+ax+b chia hết cho đa thức x2+x+1
a: \(\Leftrightarrow x^3+2x^2-3x^2-6x+5x+10+a-10⋮x+2\)
=>a-10=0
=>a=10
b: \(\Leftrightarrow x^3+x^2+x+\left(a-1\right)x^2+\left(a-1\right)x+a-1+\left(2-a\right)x+b-a+1⋮x^2+x+1\)
=>2-a=0 và b-a+1=0
=>a=2; b=a-1=2-1=1
Xác định các hằng số a và b sao cho
a) x^4 + ax + b chia hết cho x^2 - 4
b) x^4 + ax^ + bx - 1 chia hết cho x^2 - 1
c) x^3 + ax + b chia hết cho x^2 + 2x - 2
(Chia đa thức cho đa thức)
Chỉ ý kiến của mk thôi
chưa chắc đúng
Tham khảo nhé
a) Tìm a để đa thức \(x^3+x^2-x+a\) chia hết cho đa thức x + 2
b) Tìm a và b để đa thức \(x^3+ax^2+2x+b\) chia hết cho đa thức \(x^2+x+1\)
c) Tìm a và b để đa thức \(x^3+4x^2+ax+b\) chia hết cho đa thức \(x^2+x+1\)
a) \(x^3+x^2-x+a=\left(x^2-x+1\right)\left(x+2\right)+\left(a-2\right)\).
Đa thức trên chia hết cho \(x+2\) khi và chỉ khi a = 2.
b) \(x^3+ax^2+2x+b=\left(x^2+x+1\right)\left(x+1\right)+\left(a-2\right)x^2+\left(b-1\right)\) chia hết cho \(x^2+x+1\) khi và chỉ khi:
\(\frac{a-2}{1}=\frac{0}{1}=\frac{b-1}{1}\Leftrightarrow a=2;b=1\).
c) Tương tự.
Nếu tối chưa có ai làm thì để mình làm cho,bây h mk bận phải đi học r
Tìm a để đa thức P(x)= ax^3-3x^2+ax-1
a) Chia hết cho đa thức Q(x)= 2x-1
b) Chia đa thức Q(x) dư 5
a) Để P(x) chia hết cho Q(x)=2x-1 thì \(P(\dfrac{1}{2})\)=0
<=> \(P(\dfrac{1}{2})= a.(\dfrac{1}{2})^{3} -3.(\dfrac{1}{2})^{2} +a.\dfrac{1}{2}-1=0\)
<=> \(a.\dfrac{1}{8} -\dfrac{3}{4}+a.\dfrac{1}{2}-1=0\)
<=> \(\dfrac{5}{8}.a = \dfrac{7}{4}\)
<=> \(a= \dfrac{14}{5}\)
Vậy \(a=\dfrac{14}{5} thì\) P(x) chia hết cho Q(x)
Chúc bạn học tốt!!!!!😄
1. Tìm các số thực a,b để đa thức P (x) = x3 + ax2 + bx + 4 chia hết cho đa thức (x - 2)2
2. Tìm các số thực a,b để đa thức P (x) = x3 + x2 + ax + 4 chia hết cho đa thức x2 + 1
Xác định a,b để đa thức f(x)=x^3+2x^2+ax+b chia hết cho đa thức g(x)=x^2+x+1
1. Tìm a, b để đa thức: \(A(x)=2x^3-x^2+ax+b\) chia hết cho đa thức \(B(x)=x^2-1\)
2. Tìm a để đa thức A(x) chia hết cho đa thức B(x):
a) \(A(x)=x^3+ax^2-x-a\)
\(B(x)=x^2-1\)
b) \(A(x)=3x^2+ax^2+x+a\)
\(B(x)=x+1\)