Cho tam giác ABC nhọn.Đường cao BH;CK.Gọi D;E là hình chiếu của B và C trên HK.
a)Chứng minh :DK=He
b)chứng minh diện tích tam giác BHC +BKC=BEC
cho tam giác ABC có 3 góc nhọn.Đường cao AH và BK (H thuộc BC,K thuộc AC)
a)CMR:tam giác HAC đồng dạng với tam giác KBC.
b)CMR:tam giác ABC đồng dạng với tam giác HKC.
c)Tính số đo góc HKC biết góc ABC=50 độ
a) Xét ΔHAC và ΔKBC có:
\(\widehat{AHC}=\widehat{BKC}=90\left(gt\right)\)
\(\widehat{C}\) : góc chung
=>ΔHAC~ΔKBC(g.g)
b)Vì ΔHAC~ΔKBC(cmt)
=>\(\frac{HC}{AC}=\frac{KC}{BC}\) hay \(\frac{AC}{HC}=\frac{BC}{KC}\)
Xét ΔABC và ΔHKC có:
\(\widehat{C}\) : góc chung
\(\frac{AC}{HC}=\frac{BC}{KC}\) (cmt)
=>ΔABC~ΔHKC(c.g.c)
c)Vì ΔABC~ΔHKC(cmt)
=>\(\widehat{ABC}=\widehat{HKC}=50\)
a) Cho tam giác ABC vuông tại A, đường cao AH = 2cm. Tính các cạnh của tam giác ABC biết: BH = 1cm, HC = 3cm.
b) Cho tam giác ABC đều có AB = 5cm. Tính độ dài đường cao BH?
b: \(BH=\dfrac{5\sqrt{3}}{3}\left(cm\right)\)
a: Đề sai rồi bạn
a.=> BC = BH + CH = 1 + 3 = 4 cm
áp dụng định lý pitago vào tam giác vuông AHB
\(AB^2=HB^2+AH^2\)
\(AB=\sqrt{1^2+2^2}=\sqrt{5}cm\)
áp dụng định lí pitago vào tam giác vuông AHC
\(AC^2=AH^2+HC^2\)
\(AC=\sqrt{2^2+3^2}=\sqrt{13}cm\)
Cho đường tròn O,bán kính R ,Dây BC=a .A thuộc BC sao cho tam giác ABC nhọn.đường cao AD,BE,CK,trực tâm H.
a)cho BHC=BOC,tính AH,theo a
b)Tìm vị trí của a để dh.a max
Cho tam giác ABC cân tại A; đường cao BH; biết BH=h. Giải tam giác ABC
cho tam giác abc cân tại a,góc a nhọn.đường cao bd cà ce cat nhau tại h, ve diểm m là tđ của bc.cm a)a,h,m thang hang b)ed<bc
giúp mik đi ạ
a) \(H\)là giao hai đường cao \(BD,CE\)của tam giác \(ABC\)nên \(H\)là trực tâm của tam giác \(ABC\).
Suy ra \(AH\perp BC\)(1)
Tam giác \(ABC\)cân tại \(A\)nên trung tuyến \(AM\)cũng đồng thời là đường cao của tam giác \(ABC\).
Suy ra \(AM\perp BC\)(2)
Từ (1) (2) suy ra \(A,H,M\)thẳng hàng.
Xét tam giác \(EBD\)có \(\widehat{BED}\)là góc tù nên \(ED< BD\).
Xét tam giác \(BDC\)vuông tại \(D\):
\(BC>BD\)
suy ra \(BC>ED\).
a) Cho tam giác ABC vuông tại A, đường cao AH = 2cm. Tính các cạnh của tam giác ABC
biết: BH = 1cm, HC = 3cm.
b) Cho tam giác ABC đều có AB = 5cm. Tính độ dài đường cao BH?
a, Theo định lí Pytago tam giác ABH vuông tại H
\(AB=\sqrt{BH^2+AH^2}=\sqrt{5}cm\)
Theo định lí Pytago tam giác AHC vuông tại H
\(AC=\sqrt{AH^2+HC^2}=\sqrt{4+9}=\sqrt{13}\)cm
-> BC = HB + HC = 4 cm
b, Ta có tam giacs ABC đều mà BH là đường cao hay BH đồng thời là đường trung tuyến
=> AH = AC/2 = 5/2
Theo định lí Pytago tam giác ABH vuông tại H
\(BH=\sqrt{AB^2-AH^2}=\dfrac{5\sqrt{3}}{2}cm\)
cho tam giác ABC nhọn.đường cao AH.Gọi D là điểm đối xứng của H qua B.kẻ Dx//AC.gọi E là giao điểm của Dx và Cy.gọi F là trung điểm của CE.chứng minh nếu góc DAC bằng 90 độ thì góc ABF bằng 90 độ
Cho tam giác ABC. BH, CK là đường cao tam giác ABC. HE, KF là đường cao tam giác AHK. chứng minh rằng EF//BC
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
góc A chung
=>ΔAHB đồng dạng với ΔAKC
=>AH/AK=AB/AC
=>AH/AB=AK/AC
Vì góc BKC=góc BHC=90 độ
nên BKHC nội tiếp
=>góc AKH=góc ACB
góc KEH=góc KFH=90 độ
nên KEFH nội tiếp
=>góc AEF=góc AHK=góc ABC
=>EF//CB
Bài 1: Cho tam giác ABC vuông tại A, đường cao AH = 5cm. Biết CH = 6cm. tính:
a) AB, AC,BC và BH?
b) Diện tích tam giác ABC
Bài2: Cho tam giác ABC vuông tại A, đường cao AH; AB = 15cm; BC = 25cm. BTính:
a) AC,AH, HC và BH?
b) Diện tích tam giác ABC
\(1,\)
\(a,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)
\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)