Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hiền Hòa
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2021 lúc 23:30

Bài 1: 

\(CH=24\cdot\dfrac{3}{8}=9\left(cm\right)\)

\(DH=15\left(cm\right)\)

\(OC=\sqrt{9\cdot24}=6\sqrt{6}\left(cm\right)\)

\(OD=\sqrt{24^2-216}=6\sqrt{10}\left(cm\right)\)

\(OH=3\sqrt{15}\left(cm\right)\)

Hiền Hòa
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2021 lúc 23:24

Bài 1: 

\(CH=24\cdot\dfrac{3}{8}=9\left(cm\right)\)

DH=15(cm)

\(OH=3\sqrt{15}\left(cm\right)\)

\(OC=\sqrt{OH^2+CH^2}=\sqrt{81+135}=6\sqrt{6}\left(cm\right)\)

\(OD=\sqrt{24^2-216}=6\sqrt{10}\left(cm\right)\)

Hiền Hòa
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2021 lúc 23:10

\(\dfrac{DF}{EF}=\dfrac{4}{5}\)

\(\Leftrightarrow DF=\dfrac{4}{5}EF\)

\(\Leftrightarrow DF=24\left(cm\right)\)

\(\Leftrightarrow FE=30\left(cm\right)\)

\(\Leftrightarrow DI=14.4\left(cm\right)\)

Nhi Quỳnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 5 2023 lúc 8:53

a: Xét ΔDKF vuông tại K và ΔEDF vuông tại D có

góc F chung

=>ΔDKF đồng dạng với ΔEDF

b: \(DF=\sqrt{20^2-16^2}=12\left(cm\right)\)

DK=12*16/20=9,6cm

c: MK/MD=FK/FD

DI/EI=FD/FE

mà FK/FD=FD/FE

nên MK/MD=DI/EI

lmaoooooo
Xem chi tiết
HT.Phong (9A5)
21 tháng 9 2023 lúc 8:38

a) Xét tam giác DEF vuông tại D có đường cao DI ta có:
\(\dfrac{1}{DI^2}=\dfrac{1}{DE^2}+\dfrac{1}{DF^2}\)

\(\Rightarrow DI^2=\dfrac{DE^2DF^2}{DE^2+DF^2}\)

\(\Rightarrow DI^2=\dfrac{15^2\cdot20^2}{15^2+20^2}=144\)

\(\Rightarrow DI=12\left(cm\right)\) 

b) Xét tam giác DEF vuông tại D có đường cao DI áp dụng Py-ta-go ta có:

\(DF^2=EF^2-DE^2\)

\(\Rightarrow DF^2=15^2-12^2=81\)

\(\Rightarrow DF=9\left(cm\right)\)

Ta có: \(DI=\sqrt{\dfrac{DF^2DE^2}{DF^2+DE^2}}\)

\(\Rightarrow DI=\sqrt{\dfrac{9^2\cdot12^2}{9^2+12^2}}=\dfrac{108}{15}\left(cm\right)\)

Chi Chi
Xem chi tiết
Kiệt Nguyễn
14 tháng 11 2019 lúc 18:27

a) Ta có: \(DE^2+DF^2=3^2+4^2=25\left(cm\right)\)

và \(EF^2=5^2=25\left(cm\right)\)

\(\Rightarrow DE^2+DF^2=EF^2\)

\(\Delta DEF\)có ba cạnh thỏa mãn định lý Py - ta - go nên \(\Delta DEF\) vuông

b) Vì DI là trung tuyến ứng với cạnh huyền của tam giác vuông \(DEF\)nên \(DI=\frac{1}{2}EF\)

\(\Rightarrow DI=\frac{1}{2}.5=2,5\left(cm\right)\)

c) Vì DI là trung tuyến ứng với cạnh huyền của tam giác vuông \(DEF\)nên \(DI=FI=EI\)

Lại có IK vuông góc DF

\(\Rightarrow\)IK là đường trung trực của đoạn thẳng DF

\(\Rightarrow IK=\frac{1}{2}DF=\frac{1}{2}.4=2\left(cm\right)\)

Khách vãng lai đã xóa
Hồ Thị Thảo Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 4 2023 lúc 20:04

\(EF=\sqrt{3^2+4^2}=5\left(cm\right)\)

DI=3*4/5=2,4cm

Chi Chi
Xem chi tiết
Edogawa Conan
14 tháng 11 2019 lúc 12:57

D E F I K

Giải: a) Ta có: DE2 + DF= 32 + 42 = 9 + 16 = 25 

             EF2 = 52 = 25

=> DE2 + DF2 = EF2 => DEF là t/giác vuông (theo định lí Pi - ta - go đảo)

b) Xét t/giác DEF có DI là đường trung tuyến

=> DI = EI = IF = 1/2EF = 1/2.5 = 2,5 (cm)

c) Ta có: DI = IF => t/giác DIF là t/giác cân

có IK là đường cao

=> IK đồng thời là đường trung tuyến

=> DK = KF = 1/2 DF = 1/2.4 = 2 (cm)

Áp dụng định lí Pi - ta - go vào t/giác IDK vuông tại K, ta có:

DI2 = IK2 + DK2 

=> IK2 = DI2 - DK2 = 2,52 - 22 = 2,25

=> IK = 1,5 (cm)

Khách vãng lai đã xóa
Vinh Khang
Xem chi tiết
Nguyễn Ngọc Lộc
3 tháng 7 2021 lúc 15:17

- Áp dụng định lý pitago vào tam giác DEF vuông tại D :

\(DE=\sqrt{FE^2-DF^2}=27\left(cm\right)\)

- Áp dụng hệ thức lượng vào tam giác DEF vuông tại D đường cao DI

\(\left\{{}\begin{matrix}DI.FE=DE.DF\\DE^2=EI.FE\\DF^2=FI.FE\end{matrix}\right.\)

 \(\Rightarrow\left\{{}\begin{matrix}DI=21,6\\EI=16,2\\FI=28,8\end{matrix}\right.\) ( cm )

Vậy ...

missing you =
3 tháng 7 2021 lúc 15:17

pyta go \(=>DE=\sqrt{ÈF^2-DF^2}=\sqrt{45^2-36^2}=27cm\)

áp dụng hệ thức lượng

\(=>DI.EF=DE.DF=>DI=\dfrac{27.36}{45}=21,6cm\)

\(=>DE^2=EI.EF=>EI=\dfrac{27^2}{45}=16,2cm\)

\(=>FI=45-16,2=28,8cm\)

 

Lê Thị Thục Hiền
3 tháng 7 2021 lúc 15:17

Áp dụng định lí py-ta-go vào tam giác DFE vuông tại D có:

\(DE^2=EF^2-DF^2=729\)

\(\Rightarrow DE=27\) (cm)

Áp dụng ht lượng trong tam giác vuông có:

\(\dfrac{1}{DI^2}=\dfrac{1}{DE^2}+\dfrac{1}{DF^2}=\dfrac{1}{27^2}+\dfrac{1}{36^2}=\dfrac{2025}{27^2.36^2}\)

\(\Leftrightarrow DI^2=\dfrac{27^2.36^2}{45^2}\)\(\Leftrightarrow DI=\dfrac{27.36}{45}=21,6\) (cm)

\(DE^2=EI.EF\Leftrightarrow EI=\dfrac{DE^2}{EF}=\dfrac{27^2}{45}=16,2\) (cm)

\(DF^2=FI.EF\Leftrightarrow FI=\dfrac{DF^2}{EF}=\dfrac{36^2}{45}=28,8\) (cm)